Embedded Coder®

Reference

7\

MATLAB&SIMULINK

R2017a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Reference
© COPYRIGHT 2011-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only

New for Version 6.0 (Release 2011a)
Revised for Version 6.1 (Release 2011b)
Revised for Version 6.2 (Release 2012a)
Revised for Version 6.3 (Release 2012b)
Revised for Version 6.4 (Release 2013a)
Revised for Version 6.5 (Release 2013b)
Revised for Version 6.6 (Release 2014a)
Revised for Version 6.7 (Release 2014b)
Revised for Version 6.8 (Release 2015a)
Revised for Version 6.9 (Release 2015b)
Rereleased for Version 6.8.1 (Release
2015aSP1)

Revised for Version 6.10 (Release 2016a)
Revised for Version 6.11 (Release 2016b)
Revised for Version 6.12 (Release 2017a)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Alphabetical List

1

Alphabetical List

2|

Blocks — Alphabetical List

3

Blocks — Alphabetical List

4

Embedded Coder Parameters: All Parameters Tab

S|

Create block e 5-2
Description e 5-2
SettingS . . oot 5-2
Command-Line Information 5-2
Recommended Settings 5-3

Existing shared code 5-4
Description e 5-4

vii

Settings . .o e 5-4

Command-Line Information 5-4
Recommended Settings 5-4
Use only existing sharedcode 5-6
Description 5-6
Settings i e 5-6
Dependency 5-6
Command-Line Information 5-6
Recommended Settings 5-6
Use Embedded Coder Features 5-8
Description e 5-8
Settings . . oot e 5-8
Dependencies 5-8
Command-Line Information 5-8
Remove reset function 5-10
Description e 5-10
Settings ..ot 5-10
Dependencies 5-10
Command-Line Information 5-8
Remove disable function 5-11
Description 5-11
Settings i e 5-11
Dependencies 5-11
Command-Line Information 5-11
Custom token text iiiiiuinnnon. 5-12
Description 5-12
Settings . . o oo e 5-12
Dependencies 5-12
Command-Line Information 5-12

Code Generation Parameters: AUTOSAR

6|

Model Configuration Parameters: Code Generation
AUTOSAR . . 6-2

viii Contents

Code Generation: AUTOSAR Code Generation Options Tab

Overview
Configuration

To get help on an option

D e e

Generate XML file for schema version

Description

Settings
ap .

Command-Line Information

Maximum SHORT-NAME length

Description

Settings
D e e

Command-Line Information

Use AUTOSAR compiler abstraction macros

Description

Settings
D e

Command-Line Information

Support root-level matrix I/O using one-dimensional

ATTAYS « . o o ettt e e e e e e

Description

Settings
ap .

Command-Line Information

6-3
6-3
6-3
6-3

6-4
6-4
6-4
6-4
6-5

6-6
6-6

6-6
6-6

6-7
6-7
6-7
6-7
6-7

6-8
6-8
6-8
6-8
6-8

Code Generation Parameters: Code Placement

7]

Model Configuration Parameters: Code Generation Code

Placement

Code Generation: Code Placement Tab Overview

Configuration

To get help on an option

7-3

7-3

ix

X

Contents

Data definition
Description

Settings . ..

Dependencies
Command-Line Information
Recommended Settings

Data definition
Description

Settings . ..

Dependency

filename

Command-Line Information
Recommended Settings

Data declaration,

Description

Settings . . .

Dependencies
Command-Line Information
Recommended Settings

Data declaration filename

Description

Settings . ..

Dependency

Command-Line Information
Recommended Settings

Use owner from data object for data definition placement

Description

Settings . . .

Command-Line Information
Recommended Settings

#include file delimiter

Description

Settings . . .

Dependency

Command-Line Information
Recommended Settings

Signal display level

Description

7-4
7-4
7-4
7-4
7-4
7-5

7-6

7-8

7-10
7-10
7-10
7-10
7-10
7-10

7-12
7-12
7-12
7-12
7-12

7-13
7-13
7-13
7-13
7-13
7-13

7-15
7-15

Settings ..o .ot e 7-15

Dependency 7-15
Command-Line Information 7-15
Recommended Settings 7-15
Parameter tune level 7-17
Description 7-17
Settings o 7-17
Dependency 7-17
Command-Line Information 7-17
Recommended Settings 7-17
File packaging format 7-19
Description e 7-19
Settings . . .o i e 7-19
Command-Line Information 7-20
Recommended Settings 7-20

Code Generation Parameters: Code Style

8]

Model Configuration Parameters: Code Generation Code

Style e 8-2
Code Generation: Code Style Tab Overview 8-4
Configuration 8-4

To get helponanoption 8-4
Parentheses level 8-5
Description 8-5
Settings . . oot e 8-5
Command-Line Information 8-5
Recommended Settings 8-6
Preserve operand order in expression 8-7
Description e 8-7
SettingsS . . oot 8-7
Command-Line Information 8-7
Recommended Settings 8-7

xi

Preserve condition expression in if statement 8-9

Description e 8-9
SettINgS . .o 8-9
Command-Line Information 8-9
Recommended Settings 8-10
Convert if-elseif-else patterns to switch-case statements . . 8-11
Description 8-11
Settings o 8-11
Command-Line Information 8-12
Recommended Settings 8-12
Preserve extern keyword in function declarations 8-13
Description e 8-13
Settings . . oot e 8-13
Command-Line Information 8-13
Recommended Settings 8-14

Suppress generation of default cases for Stateflow switch

statements if unreachable 8-15
Description e 8-15
Settings ..ot 8-15
Command-Line Information 8-15
Recommended Settings 8-16

Replace multiplications by powers of two with signed bitwise

shifts 8-17
Description 8-17
Settings i e 8-17
Command-Line Information 8-17
Recommended Settings 8-18

Allow right shifts on signed integers 8-19
Description 8-19
Settings . . o oo e 8-19
Command-Line Information 8-19
Recommended Settings 8-19

Castingmodes 8-21
Description e 8-21
Settings ..ot e 8-21
Command-Line Information 8-22
Recommended Settings 8-22

xii Contents

Indent style 8-23

Description 8-23
Settings ..ot 8-23
Command-Line Information 8-24
Recommended Settings 8-24
Indent size 8-25
Description 8-25
Settings o 8-25
Command-Line Information 8-25
Recommended Settings 8-25

Code Generation Parameters: Data Type
Replacement

9

Model Configuration Parameters: Code Generation Data

Type Replacement 9-2
Code Generation: Data Type Replacement Tab 9-4
Configuration 9-4

To get helponanoption 9-4
Replace data type names in the generated code 9-5
Description e 9-5
SettINgS . .o 9-5
Dependencies 9-6
Command-Line Information 9-6
Recommended Settings 9-6
Replacement Name: double 9-7
Description 9-7
Settings . . oot 9-7
Dependency e 9-8
Command-Line Information 9-8
Recommended Settings 9-8
Replacement Name: single 9-9
Description e 9-9
Settings . . o oot 9-9

xiii

xiv

Contents

Dependency

Command-Line Information
Recommended Settings

Replacement Name: int32

Description

Settings . ..

Dependency

Command-Line Information
Recommended Settings

Replacement Name: intl6

Description

Settings . . .

Dependency

Command-Line Information
Recommended Settings

Replacement Name: int8

Description

Settings . ..

Dependency

Command-Line Information
Recommended Settings

Replacement Name: uint32

Description

Settings . ..

Dependency

Command-Line Information
Recommended Settings

Replacement Name: uintl6

Description

Settings . . .

Dependency

Command-Line Information
Recommended Settings

Replacement Name: uint8

Description

Settings . ..

Dependency

9-10
9-10
9-10

9-11
9-11
9-11
9-11
9-11
9-12

9-13
9-13
9-13
9-13
9-13
9-14

9-15
9-15
9-15
9-15
9-15
9-16

9-17
9-17
9-17
9-17
9-17
9-18

9-19
9-19
9-19
9-19
9-19
9-20

9-21
9-21
9-21
9-21

Command-Line Information

Recommended Settings .

Replacement Name: boolean

Description

Settings i e
Dependency

Command-Line Information

Recommended Settings .

Replacement Name: int

Description

Settings . . .o v e
Dependency e

Command-Line Information

Recommended Settings .

Replacement Name: uint

Description

Settings ..ot
Dependency

Command-Line Information

Recommended Settings .

Replacement Name: char .
Description

Settings v e
Dependency

Command-Line Information

Recommended Settings .

9-21
9-22

9-23
9-23
9-23
9-24
9-24
9-24

9-26
9-26
9-26
9-27
9-27
9-27

9-28
9-28
9-28
9-29
9-29
9-29

9-30
9-30
9-30
9-30
9-30
9-31

Code Generation Parameters: Memory Sections

10|

Model Configuration Parameters: Code Generation Memory
Sections

Code Generation: Memory Sections Tab Overview

Configuration

To get help on an option

10-2
10-3

10-3
10-3

Xv

xvi

Contents

Package
Description
Settings . .

D e e

Command-Line Information
Recommended Settings

Refresh package list

Description

D oo e

Initialize/Terminate

Description
Settings . .

Command-Line Information
Recommended Settings

Execution
Description
Settings . .

Command-Line Information
Recommended Settings

Shared utility
Description
Settings . .

Command-Line Information
Recommended Settings

Constants
Description
Settings . .

Command-Line Information
Recommended Settings

Inputs/Outputs
Description
Settings . .

Command-Line Information
Recommended Settings

Internal data .
Description

10-4
10-4
10-4
10-4
10-4
10-5

10-6
10-6
10-6

10-7
10-7
10-7
10-7
10-7

10-9
10-9
10-9
10-9
10-9

10-11
10-11
10-11
10-11
10-11

10-13
10-13
10-13
10-13
10-13

10-15
10-15
10-15
10-15
10-15

10-17
10-17

Settings i e 10-17

Command-Line Information 10-17
Recommended Settings 10-18
Parameters 10-19
Description 10-19
Settings v e 10-19
Command-Line Information 10-19
Recommended Settings 10-19
Validation results 10-21
Description 10-21
Settings . ..o i e 10-21
Recommended Settings 10-21

Code Generation Parameters: Templates

11

Model Configuration Parameters: Code Generation

Templates 11-2
Code Generation: Templates Tab Overview 11-3
Configuration 11-3

To get helponanoption 11-3
Code templates: Source file (*.c) template 114
Description 114
Settings i e 114
Command-Line Information 114
Recommended Settings 114
Code templates: Header file (*.h) template 11-6
Description e 11-6
Settings v e 11-6
Command-Line Information 11-6
Recommended Settings 11-6
Data templates: Source file (*.c) template 11-8
Description e 11-8
SEttINgS . . . e 11-8

xvil

xviii

12

Contents

Command-Line Information

Recommended Settings .

Data templates: Header file (*.h) template

Description

Settings

Command-Line Information

Recommended Settings .

File customization template

Description

Settings

Command-Line Information

Recommended Settings .

Generate an example main program

Description

Settings
Tips ..o
Dependencies

Command-Line Information

Recommended Settings .

Target operating system . .

Description

Settings
Dependencies

Command-Line Information

Recommended Settings .

Code Generation Parameters: Verification

Model Configuration Parameters: Code Generation

Verification e

Code Generation: Verification Tab Overview

Configuration

To get help on an option

12-2

12-4
12-4
12-4

Measure task execution time

Description

Settings ..ot
Dependencies

Command-Line Information

Recommended Settings

Measure function execution times

Description

Settings v e
Dependencies

Command-Line Information

Recommended Settings

Workspace variable

Description

Settings . . o vt e
Dependency

Command-Line Information

Recommended Settings

Save options

Description

Settings
Dependency

Command-Line Information

Recommended Settings

Code coverage tool
Description

Settings
Dependencies

Command-Line Information

Recommended Settings

Enable portable word sizes

Description

Settings
Dependencies

Command-Line Information

Recommended Settings

12-5
12-5
12-5
12-5
12-5
12-5

12-7
12-7
12-7
12-7
12-7
12-7

12-9
12-9
12-9
12-9
12-9
12-9

12-11
12-11
12-11
12-11
12-11
12-12

12-13
12-13
12-13
12-13
12-13
12-14

12-15
12-15
12-15
12-15
12-15
12-16

xix

XX

Contents

Enable source-level debugging for SIL.
Description e
Settings ..o oot e
Command-Line Information
Recommended Settings

12-17
12-17
12-17
12-17
12-17

Configuration Parameters

13

Code Generation: Coder Target Pane
Code Generation: Coder Target Pane Overview (previously
“IDE Link Tab Overview”)0.....
Coder Target: Tool Chain Automation Tab Overview
Build format
Build action
Overrun notification
Functionname
Configuration
Compiler options string0ouin....
Linker options string
System stack size MAUS)
System heap size MAUS)
Profile real-time execution
Profile by
Number of profiling samples to collect
Maximum time allowed to build project (s)
Maximum time allowed to complete IDE operation (s)
Export IDE link handle to base workspace
IDE link handlename
Source file replacement

Code Generation: Target Hardware Resources Pane
Code Generation: Coder Target Pane Overview
(Target Hardware Resources)
Coder Target: Target Hardware Resources Tab Overview .
IDE/Tool Chain 0.
Target Hardware Resources: Board Tab
Target Hardware Resources: Memory Tab
Target Hardware Resources: Section Tab
Target Hardware Resources: DSP/BIOS Tab
Target Hardware Resources: Peripherals Tab

13-2

13-4

13-5

13-7

13-9
13-12
13-14
13-15
13-17
13-19
13-21
13-23
13-25
13-27
13-28
13-30
13-31
13-31
13-33
13-34

13-36
13-38
13-38
13-39
13-40
13-41
13-44
13-47
13-50
13-53

C28x-Clocking it
C28x-ADC
C28-COMP e
C28x-eCAN_A, C28x-eCAN_B
C28x-eCAP
C28x-ePWM
C28x-12C e
C28x-SCI_A, C28x-SCI_B, C28x-SCI.C
C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI.D
C28x-eQEP
C28x-Watchdog
C28x-GPIO
C28x-Flash loader
C28x-DMA_Ch[#]
C28x-LIN e
Add Processor Dialog Box
Target Hardware Resources Tab: Linux, VxWorks, or
Windows

Hardware Implementation Pane: Altera Cyclone V SoC
development kit, Arrow SoCKit development board . .
Hardware Implementation Pane Overview
Operating system optionso..u...
Clocking i e
Build Options i
External mode

Hardware Implementation Pane: ARM Cortex-A9 (QEMU)
Hardware Implementation Pane Overview
Operating system options
Clocking e
Build Options
External mode

Hardware Implementation Pane
Hardware Implementation Pane Overview
ClocKIng
External mode,

Hardware Implementation Pane
Hardware Implementation Pane Overview
Build options
ClocKIngot

DAC

13-56
13-60
13-63
13-64
13-67
13-70
13-73
13-80
13-83
13-86
13-88
13-90
13-95
13-97
13-106
13-113

13-115

13-116
13-117
13-118
13-119
13-120
13-121

13-122
13-123
13-124
13-125
13-126
13-128

13-129
13-130
13-131
13-128

13-133
13-134
13-135
13-136
13-137

xx1

UARTO, UART1, UART2, and UART3 13-138

Ethernet 13-141
External mode 13-144
Hardware Implementation Pane 13-145
Code Generation Pane 13-146
Scheduler options 13-147
Build Options 13-148
Clocking e e 13-149
I12C0 13-150
12C1 .. 13-151
Timer/PWM e 13-152
UARTO, UART1, and UART2 13-153
PIL .. e 13-154
External mode 13-155

Hardware Implementation Pane: BeagleBone Black 13-156

Hardware Implementation Pane Overview 13-157
Board Parameters 13-157
Build Options 13-126
ClocKIngt 13-125
Operating system options 13-161
External mode 13-128
Hardware Implementation Pane 13-163
Hardware Implementation Pane Overview 13-165
Embedded Coder Support Package for STMicroelectronics
Discovery Boards Hardware Settings 13-166
Operating system options 13-167
Scheduler options 13-168
Build options 13-170
Clocking e 13-172
PIL .. 13-173
ADC Commonovttiit i 13-175
ADC1,ADC2,ADC 3 ... i 13-177
GPIO A, GPIO B, GPIO C, GPIO D, GPIO E, GPIO F, GPIO G,
GPIOH,GPIOT 13-179
External mode 13-180
Hardware Implementation Pane 13-181
Hardware Implementation Pane Overview 13-165
Build options 13-170
ClocKIngot 13-172
Ethernet 13-187

xxii Contents

PIL

Hardware Implementation Pane
Hardware Implementation Pane Overview

Build options .
Clocking
2C

Hardware Implementation Pane
Hardware Implementation Pane Overview
Texas Instruments C2000 Settings
C28x-Scheduler optionsu......
C28x-Build options

C28x-Clocking
C28x-ADC . ..
C28x-DAC . ..
C28-COMP . .
C28x-eCAN_A,
C28x-eCAP ..

C28x-ePWM e

C28x-12C
C28x-SCI_A, C
C28x-SPI_A, C
C28x-eQEP . .

C28%-eCAN B

28x-SCI_B, C28x-SCI_C
28x-SPI_B, C28x-SPI_C, C28x-SPI.D

C28x-Watchdog i

C28x-GPIO ..

C28x-Flash loader
C28x-DMA_Ch[#]

C28x-LIN . ..
External mode

Execution profiling

Hardware Implementation Pane
Hardware Implementation Pane Overview
M3x-Scheduler options
C28x / ARM Cortex-M3 - Build options

M3x-Clocking

M3x-GPIO A-D

M3x-UARTO0-4
M3x-Ethernet

13-173
13-180

13-181
13-165
13-196
13-197
13-198
13-199
13-200
13-201

13-202
13-205
13-206
13-208
13-210
13-56
13-60
13-221
13-63
13-64
13-67
13-70
13-73
13-80
13-83
13-86
13-88
13-90
13-95
13-97
13-106
13-273
13-275

13-276
13-278
13-279
13-280
13-283
13-285
13-287
13-290

xx1iii

M3x-PIL . . 13-291

External mode 13-293
C28x-Clocking it 13-56
C28x-ADC 13-60
C28x-eCAP 13-67
C28x-ePWM 13-70
C28x-12C . . . 13-73
C28x-SCI_A, C28x-SCI_B, C28x-SCI.C 13-80
C28x-SPI_A, C28x-SPI_B, C28x-SPI_C, C28x-SPI.D 13-83
C28x-eQEP 13-86
C28x-GPIO e 13-90
C28x-DMA_Ch[#] 13-97
External mode 13-273

Hardware Implementation Pane: Xilinx Zynq ZC702/ZC706

Evaluation Kits, ZedBoard 13-338
Hardware Implementation Pane Overview 13-339
Operating system settings 13-340
Clocking 13-340
Build Options 13-340
External mode 13-342

Recommended Settings Summary for Model Configuration
Parameters, 13-343

Parameters for Creating Protected Models

14

Create Protected Model 14-2
Create Protected Model: Overview 14-2
Open read-only view of model 14-4
Simulate 14-5
Use generated code 14-6
Code interface 14-7
Content typettt e 14-8
Create protected model in 14-8
Create harness model for protected model 14-10

xxiv Contents

Model Advisor Checks

15

Embedded Coder Checks 15-2
Embedded Coder Checks Overview 15-3
Check for blocks not recommended for C/C++ production code

deployment 15-4
Identify lookup table blocks that generate expensive out-of-

range checkingcode 15-5
Check output types of logic blocks 15-7
Check the hardware implementation 15-9
Identify questionable software environment specifications . 15-11
Identify questionable code instrumentation (data I/0) 15-13
Check for blocks not recommended for MISRA C:2012 15-15
Check configuration parameters for MISRA C:2012 15-17
Check for unsupported block names 15-20
Check usage of Assignment blocks 15-21
Check for bitwise operations on signed integers 15-23
Identify questionable subsystem settings 15-24
Identify blocks that generate expensive fixed-point and

saturation code 15-24
Identify questionable fixed-point operations 15-28
Identify blocks that generate expensive rounding code 15-30
Check for equality and inequality operations on floating-point

Values ... e 15-31
Check for switch case expressions without a default case . . 15-32
Check for recursive functioncalls 15-32

Tools — Alphabetical List

16

C/C++ Functions That Support Symbolic Dimensions
for Simulink Function Blocks

17

XXV

Alphabetical List

1 Alphabetical List

1-2

activate

Mark file, project, or build configuration as active

Syntax

activate(IDE Obj,"objectname®,“type™)

IDEs

This function supports the following IDEs:

* Analog Devices® VisualDSP++®

+ Texas Instruments™ Code Composer Studio™ v3

Description

Use the activate(IDE Obj,"objectname®,"type*") method to make a project file or
build configuration active in the MATLAB® session.

When you make a project, file, or build configuration active, methods you invoke on the
IDE handle object apply to that project, file, or build configuration.

Input Arguments
IDE_Obj

For IDE Obj, enter the name of the IDE handle object you created using a constructor
function.

objectname
For objectname, enter the name of the project file or build configuration to make active.

For project files, enter the full file name including the extension.

activate

For build configurations, enter "Debug”, "Release”, or "Custom”. Before using the
activate method on a build configuration, activate the project that contains the build
configuration. For more information about configurations, see “Configuration” on page
13-15.

type

For type, enter the type of object to make active. If you omit the type argument, type
defaults to "project”. Enter one of the following character vectors for type:

* "project” — Makes a specified project active.
* "buildcfg®™ — Make a specified build configuration active

IDE support for type

CCS VisualDSP++
"project” Yes Yes
"buildcfg” Yes Yes
Examples

After using a constructor to create the IDE handle object, h, open several projects, make
the first one active, and build the project:

-open("c:\temp\myprojl-)
-open("c:\temp\myproj2*-)
-open("c:\temp\myproj3-)
.activate("c:\temp\myprojl®, “project®)
-build

jun plien e pien M

After making a project active, make the "debug” configuration active:

h.activate("debug”, "buildcfg")

See Also

build | new | remove

Introduced in R2011a

1-3

1 Alphabetical List

1-4

activateConfigSet

Class: cgv.CGV
Package: cgv

Activate configuration set of model

Syntax

cgvObj .activateConfigSet(configSetName)

Description

cgvObj .activateConfigSet(configSetName) specifies the active configuration
set for the model, only while the model is executed by cgvObj. cgvObj is a handle
to a cgv.CGV object. conFigSetName is the name of a configuration set object,
Simulink.ConfigSet (Simulink), which already exists in the model. The original
configuration set for the model is restored after execution of the cgv.CGV object.

Examples

Before calling cgv.CGV.run on a cgv.CGV object for a model, the model must already
contain the named configuration set. After creating the cgv.CGV object for a model, you
can use cgv.CGV.activateConfigSet to activate a configuration set in the model
when the cgv.CGV object simulates the model.

configObj = Simulink.ConfigSet;
attachConfigSet("rtwdemo_cgv", configObj);
cgvObj = cgv.CGV("rtwdemo_cgv™);

cgvObj .activateConfigSet(configObj .Name);

See Also

Topics
“About Model Configurations” (Simulink)

activateConfigSet

“Programmatic Code Generation Verification”

1-5

1 Alphabetical List

1-6

add

Add files to active project in IDE

Syntax

add(IDE _Obj,filename,filetype)

IDEs

This function supports the following IDEs:

Analog Devices VisualDSP++

Texas Instruments Code Composer Studio v3

Description

Use add(IDE _Obj,filename,filetype) to add an existing file to the active project
in the IDE. Using the add function is equivalent to selecting Project > Add Files to
Project in the IDE.

Before using add:

Use the constructor function for your IDE to create an IDE handle object, such as
IDE Obj.

Create or open a project using the new or open methods.
Make the project active in the IDE using the activate method.

You can add file types your IDE supports to your project. Consult the documentation for
your IDE for detailed information about supported file types.

Supported File Types and Extensions

File Type Extensions Supported CCS IDE Project Folder
C/C++ source files .C, .Cpp, -CC, .CXX, .sa, |Source
-h, _hpp, -hxx

File Type

Extensions Supported

CCS IDE Project Folder

Assembly source files

.a*, .s* (excluding .sa),
-dsp

Source

Object and library files

.o*, _lib, .doj, .dlb

Libraries

Linker command file

.cmd, . IdF

Project Name

VDK support file -vdk Not applicable
DSP/BIOS file (only with .tcf DSP/BIOS Config
CCS IDE)

Note: CCS IDE drops files in the project folder, indicated in the right-most column of the
preceding table.

Input Arguments
add places the file specified by filename in the active project in the IDE.
IDE_Obj

IDE Obj is a handle for an instance of the IDE. Before using a method, the constructor
function for your IDE to create IDE_Obj.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename without a path or relative path, the code generator searches
the IDE working folder first. It then searches the folders on your MATLAB path. Add
supported file types shown in the preceding table.

Filetype

filetype is an optional argument that specifies the file type. For example, "1ib",
"src”, "header”.

1-7

1 Alphabetical List

Examples

Start by creating an IDE handle object, such as IDE_Obj using the constructor for your
IDE. Then enter the following commands:

new(IDE_Obj, "myproject”, "project®); % Create a new project.

add(IDE_Obj, "sourcefile.c"); % Add a C source file.

See Also

activate | cd | open | remove | new

Introduced in R2011a

1-8

addAdditionalHeaderFile

addAdditionalHeaderFile

Add header file to array of header files for code replacement table entry

Syntax

addAdditionalHeaderFile(hEntry, headerFile)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW.TFICFunctionEntry or
hEntry = RTW_TFfICOperationEntry.

headerFile

Character vector specifying an additional header file.

Description

The addAdditionalHeaderFile function adds a specified additional header file to the
array of additional header files for a code replacement table entry.

This function adds -1 to the compile line in the generated makefile.

Examples

In the following example, the addAdditionalHeaderFi le function is used

along with addAdditional IncludePath, addAdditionalSourceFile, and
addAdditionalSourcePath to fully specify additional header and source files for a
code replacement table entry.

% Path to external header and source files
libdir = fullfile("$(MATLAB_ROOT)","..", "..", "lib");

op_entry = RTW.TFICOperationEntry;

1-9

1 Alphabetical List

1-10

addAdditionalHeaderFile(op_entry, "all_additions.h");
addAdditional IncludePath(op_entry, fullfile(libdir, "include®));

addAdditionalSourceFile(op_entry, "all_additions.c");
addAdditionalSourcePath(op_entry, fullfile(libdir, "src"));

See Also

addAdditional IncludePath | addAdditionalSourceFile
addAdditionalSourcePath

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

addAdditionallncludePath

addAdditionalincludePath

Add include path to array of include paths for code replacement table entry

Syntax

addAdditional IncludePath(hEntry, path)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW._TFfICFunctionEntry or
hEntry = RTW.TFICOperationEntry.

path

Character vector specifying the full path to an additional header file. The character
vector can include tokens (for example, $myfolder$, where myfolder is a variable
defined as a character vector or cell array of character vectors in the MATLAB
workspace).

Description

The addAdditional IncludePath function adds a specified additional include path to
the array of additional include paths for a code replacement table entry.

This function adds -1 to the compile line in the generated makefile.

Examples

In the following example, the addAdditional IncludePath function is used

along with addAdditionalHeaderFile, addAdditionalSourceFile, and
addAdditionalSourcePath to fully specify additional header and source files for a
code replacement table entry.

% Path to external header and source files

1-11

1 Alphabetical List

1-12

libdir = fullfile("$(MATLAB_ROOT)",*..", "..*, "lib");

op_entry = RTW.TFICOperationEntry;

addAdditionalHeaderFile(op_entry, "all_additions.h");
addAdditional IncludePath(op_entry, fullfile(libdir, "include®));

addAdditionalSourceFile(op_entry, "all_additions.c");
addAdditionalSourcePath(op_entry, fullfile(libdir, "src"));

See Also

addAdditionalHeaderFile | addAdditionalSourceFile |
addAdditionalSourcePath

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

addAdditionallinkObj

addAdditionalLinkObj

Add link object to array of link objects for code replacement table entry

Syntax

addAdditionalLinkObj(hEntry, 1inkObj)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW.TFICFunctionEntry or
hEntry = RTW.TFfICOperationEntry.

1inkObj

Character vector specifying an additional link object.

Description

The addAdditionalLinkObj function adds a specified additional link object to the
array of additional link objects for a code replacement table entry.

Examples

In the following example, the addAdditionalLinkObj function is used along with
addAdditionalLinkObjPath to fully specify an additional link object file for a code
replacement table entry.

% Path to external object files
libdir = fullfile("$(MATLAB_ROOT)","..", "..", "lib");

op_entry = RTW.TFICOperationEntry;

addAdditionalLinkObj(op_entry, "addition.o");
addAdditionalLinkObjPath(op_entry, fullfile(libdir, "binT"));

1-13

1 Alphabetical List

See Also

addAdditionalLinkObjPath

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

1-14

addAdditionallinkObjPath

addAdditionalLinkObjPath

Add link object path to array of link object paths for code replacement table entry

Syntax

addAdditionalLinkObjPath(hEntry, path)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement entry class, such as hEntry = RTW.TFICFunctionEntry or hEntry
= RTW.TFICOperationEntry.

path

Character vector specifying the full path to an additional link object. The character
vector can include tokens (for example, $myFfolder$, where myfolder is a variable
defined as a character vector or cell array of character vectors in the MATLAB
workspace).

Description

The addAdditionalLinkObjPath function adds a specified additional link object path
to the array of additional link object paths for a code replacement table entry.

Examples

In the following example, the addAdditionalLinkObjPath function is used along
with addAdditionalLinkObj to fully specify an additional link object file for a code
replacement table entry.

% Path to external object files
libdir = fullfile("$(MATLAB_ROOT)","..", "..", "lib");

op_entry = RTW.TFICOperationEntry;

1-15

1 Alphabetical List

1-16

addAdditionalLinkObj(op_entry, "addition.o");
addAdditionalLinkObjPath(op_entry, fullfile(libdir, "binT"));

See Also

addAdditionalLinkObj

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

addAdditionalSourceFile

addAdditionalSourceFile

Add source file to array of source files for code replacement table entry

Syntax

addAdditionalSourceFile(hEntry, sourceFile)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW.TFICFunctionEntry or
hEntry = RTW_TFfICOperationEntry.

sourceFile

Character vector specifying an additional source file.

Description

The addAdditionalSourceFile function adds a specified additional source file to the
array of additional source files for a code replacement table entry.

This function adds -1 to the compile line in the generated makefile.

Examples

In the following example, the addAdditionalSourceFi le function is used

along with addAdditionalHeaderFile, addAdditional IncludePath, and
addAdditionalSourcePath to fully specify additional header and source files for a
code replacement table entry.

% Path to external header and source files
libdir = fullfile("$(MATLAB_ROOT)","..", "..", "lib");

op_entry = RTW.TFICOperationEntry;

1-17

1 Alphabetical List

1-18

addAdditionalHeaderFile(op_entry, "all_additions.h");
addAdditional IncludePath(op_entry, fullfile(libdir, "include®));

addAdditionalSourceFile(op_entry, "all_additions.c");
addAdditionalSourcePath(op_entry, fullfile(libdir, "src"));

See Also

addAdditionalHeaderFile | addAdditional IncludePath |
addAdditionalSourcePath

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

addAdditionalSourcePath

addAdditionalSourcePath

Add source path to array of source paths for code replacement table entry

Syntax

addAdditionalSourcePath(hEntry, path)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW._TFfICFunctionEntry or
hEntry = RTW.TFICOperationEntry.

path

Character vector specifying the full path to an additional source file. The character
vector can include tokens (for example, $myfolder$, where myfolder is a variable
defined as a character vector or cell array of character vectors in the MATLAB
workspace).

Description

The addAdditionalSourcePath function adds a specified additional source file path to
the array of additional source file paths for a code replacement table.

This function adds -1 to the compile line in the generated makefile.

Examples

In the following example, the addAdditionalSourcePath function is used

along with addAdditionalHeaderFile, addAdditional IncludePath, and
addAdditionalSourceFile to fully specify additional header and source files for a
code replacement table entry.

% Path to external header and source files

1-19

1 Alphabetical List

1-20

libdir = fullfile("$(MATLAB_ROOT)",*..", "..*, "lib");

op_entry = RTW.TFICOperationEntry;

addAdditionalHeaderFile(op_entry, "all_additions.h");
addAdditional IncludePath(op_entry, fullfile(libdir, "include®));

addAdditionalSourceFile(op_entry, "all_additions.c");
addAdditionalSourcePath(op_entry, fullfile(libdir, "src"));

See Also

addAdditionalHeaderFile | addAdditional IncludePath |
addAdditionalSourceFile

Topics
“Specify Build Information for Replacement Code”
“Define Code Replacement Mappings”

Introduced in R2008a

addAlgorithmProperty

addAlgorithmProperty

Add algorithm properties for code replacement table entry

Syntax

addAlgorithmProperty(hEntry, name-value)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement entry class, such as hEntry = RTW.TFICFunctionEntry or hEntry
= RTW.TFICOperationEntry.

name-value

Algorithm property, specified as a comma-separated pair consisting of the name of an
algorithm property and one or more algorithm values. Specify multiple values as a
cell array of character vectors.

Name Values

"ExtrapMethod” "Clip" | "Linear™

" IndexSearchMethod* "Evenly spaced points® | "Linear search®
| "Binary search®

" InterpMethod” "Flat® | "Linear” | "Cubic spline~

" IndexSearchMethod* "Evenly spaced points® | "Linear search®

| "Binary search®
"NumberOfTableDimensionsy"1" | "2" | "3 | "4" | | "5*
"RemoveProectionlinput* "off" | "on"

"RndMeth* "Ceiling” | "Convergent® | "Floor"® |
"Nearest” | "Round” | "Simplest” | "Zero*

"SaturateOnlntegerOverflq off® | "on*

"UselLastBreakpoint* "off" | "on"

1-21

1 Alphabetical List

1-22

Name

Values

"UselLastTablevalue*

"off" | "on*

"ValidlndexMayReachLast"

"off" | "on"

Description

The addAlgorithmProperty function adds algorithm property settings to the
conceptual representation of a code replacement table entry. For example, use this
function to adjust the algorithms applied by lookup table functions.

Examples

In the following example, the addAlgorithmProperty function configures the code
generator to apply the following methods when replacing code for the lookup1D function:

+ Clip extrapolation

+ Linear interpolation

* Binary or linear index search
hLib = RTW.TfITable;

hEnt = RTW.TFfICFunctionEntry;

hEnt.setTfICFunctionEntryParameters(-.

“Key",
"Priority”,

" ImplementationName”,

"lookuplD®, ...
100, ...
"my_LookuplD_Repl~”,

"ImplementationHeaderFile®, "my_LookuplD.h",
"ImplementationSourceFile”, "my_LookuplD.c",
"GenCallback®™, "RTW.copyFileToBuildDir");

arg = hEnt.getTflArgFromString("yl", "double®);

arg.10Type = "RTW_I0_OUTPUT";
hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString(“ul®, "double®);

hEnt.addConceptualArg(arg);

arg = RTW.TFIArgMatrix(*u2*,"RTW_IO_INPUT", "double®);

arg.DimRange = [0 O; Inf Inf];
hEnt.AddConceptualArg(arg);

arg = RTW.TFIArgMatrix(*u3®, “RTW_IO_INPUT", “double®);

arg.DimRange = [0 O; Inf Inf];

addAlgorithmProperty

hEnt.addConceptualArg(arg);

hEnt.addAlgorithmProperty("ExtrapMethod®, "Clip®);

hEnt.addAlgorithmProperty (" InterpMethod”, Linear");

hEnt.addAlgorithmProperty (" IndexSearchMethod®, {"Linear search”, ...
"Binary search"});

See Also

getTfFlArgFromString

Topics

“Lookup Table Function Code Replacement”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2014b

1-23

1 Alphabetical List

addArgConf

Class: RTW.ModelSpecificCPrototype
Package: RTW

Add argument configuration information for Simulink model port to model-specific C
function prototype

Syntax

addArgConf(obj, portName, category, argName, qualifier)

Description

addArgConf(obj, portName, category, argName, qualifier) method adds
argument configuration information for a port in your ERT-based Simulink® model
to a model-specific C function prototype. You specify the name of the model port, the
argument category ("Value® or "Pointer”), the argument name, and the argument
type qualifier (for example, "const”).

The order of addArgConf calls determines the argument position for the port in
the function prototype, unless you change the order by other means, such as the
RTW.ModelSpecificCPrototype.setArgPosition method.

If a port has an existing argument configuration, subsequent calls to addArgConf with
the same port name overwrite the previous argument configuration of the port.

Input Arguments

obj Handle to a model-specific C prototype function control object
previously returned by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification(modelName).

portName Character vector specifying the unqualified name of an inport or
outport in your Simulink model.

1-24

addArgConf

category Character vector specifying the argument category, either
"Value® or "Pointer-.

argName Character vector specifying a valid C identifier.

qualifier Character vector specifying the argument type qualifier: "none*,

“const”®, "const *",or "const * const-".

Examples

In the following example, you use the addArgConf method to add argument
configuration information for ports Input and Output in an ERT-based version of
rtwdemo_counter. After executing these commands, click the Configure Model
Functions button on the Interface pane of the Configuration Parameters dialog box
to open the Model Interface dialog box and confirm that the addArgConf commands
succeeded.

rtwdemo_counter
set_param(gcs, "SystemTargetFile®,"ert.tlc")

%% Create a function control object
a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports
addArgConf(a, "Input”, "Pointer”, "inputArg", "const *%)
addArgConf(a, "Output”, "Pointer”, "outputArg”, "none")

%% Attach the function control object to the model
attachToModel (a,gcs)

Alternatives

You can specify the argument configuration information in the Model Interface dialog
box. See “Configure Function Prototypes Using Graphical Interfaces”.

See Also

RTW.ModelSpecificCPrototype.attachToModel

Topics
“Control Generation of Function Prototypes”

1-25

1 Alphabetical List

addBaseline

Class: cgv.CGV
Package: cgv

Add baseline file for comparison

Syntax

cgvObj .addBasel ine(inputName,baselineFile)
cgvObj .addBaseline(inputName,baselineFile,toleranceFile)

Description

cgvObj .addBasel ine(inputName,baselineFile) associates a baseline data file to
an inputName in cgvObj. cgvObj is a handle to a cgv.CGV object. If a baseline file is

present, when you call cgv.CGV.run, cgvObj automatically compares baseline data to
the result data of the current execution of cgvObj.

cgvObj .addBaseline(inputName,baselineFile,toleranceFile) includes an
optional tolerance file to apply when comparing the baseline data to the result data of the
current execution of cgvObj.

Input Arguments

inputName

A unique numeric or character identifier assigned to the input data associated with
baselineFile

baselineFile
A MAT-file containing baseline data
toleranceFile

File containing the tolerance specification, which is created using
cgv.CGV.createToleranceFile

1-26

addBaseline

Examples

A typical workflow for defining baseline data in a cgv.CGV object and then comparing
the baseline data to the execution data is as follows:

1 Create a cgv.CGV object for a model.

2 Add input data to the cgv.CGV object by calling cgv.CGV.add InputData.

3 Add the baseline file to the cgv.CGV object by calling cgv.CGV.addBaseline.
which associates the inputName for input data in the cgv.CGV object with input
data stored in the cgv.CGV object as the baseline data.

4 Run the cgv.CGV object by calling cgv.CGV. run, which automatically compares the
baseline data to the result data in this execution.

5 Call cgv.CGV.getStatus to determine the results of the comparison.

See Also

cgv.CGV.addInputData | cgv.CGV.getStatus | cgv.CGV.run |
cgv.CGV.createToleranceFile

Topics
“Verify Numerical Equivalence with CGV”

1-27

1 Alphabetical List

1-28

addHeaderReporiFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute before executing input data in object

Syntax

cgvObj .addHeaderReportFcn(Cal lbackFcn)

Description

cgvObj .addHeaderReportFcn(Cal lbackFcn) adds a callback function to
cgvObj.cgvObj is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV.run calls
CallbackFcn before executing input data included in cgvObj. The callback function
signature is:

CallbackFcn(cgvObj)

Examples

The callback function, HeaderReportFcn, is added to cgv.CGV object, cgvObj

cgvObj .addHeaderReportFcn(@HeaderReportFcn) ;
where HeaderReportFcn is defined as:

function HeaderReportFcn(cgvObj)
end
See Also

cgv.CGV.run

Topics
“Callbacks for Customized Model Behavior” (Simulink)

addPostExecFen

addPostExecFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute after each input data file is executes

Syntax

cgvObj .addPostExecFcn(Cal lbackFcn)

Description

cgvObj .addPostExecFcn(Cal IbackFcn) adds a callback function to cgvObj. cgvObj
is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV.run calls CallbackFcn after
each input data file is executed for the model. The callback function signature is:

CallbackFcn(cgvObj, inputlindex)
inputIndex is a unique numerical identifier associated with input data in the cgvObj.

Examples

The callback function, PostExecutionFcn, is added to cgv.CGV object, cgvObj

cgvObj . addPostExecFcn(@PostExecutionkFcn);
where PostExecutionFcn is defined as:

function PostExecutionFcn(cgvObj, inputindex)
end
See Also

cgv.CGV.run

Topics
“Callbacks for Customized Model Behavior” (Simulink)

1-29

1 Alphabetical List

1-30

addPostExecReportFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute after each input data file executes

Syntax

cgvObj .addPostExecReportFcn(Cal lbackFcn)

Description

cgvObj .addPostExecReportFcn(Cal IbackFcn) adds a callback function to
cgvObj.cgvObj is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV.run calls
CallbackFcn after each input data file is executed for the model. The callback function
signature is:

CallbackFcn(cgvObj, inputlndex)
inputIndex is a unique numeric identifier associated with input data in the cgvObj.

Examples

The callback function, PostExecutionReportFcn, is added to cgv.CGV object, cgvObj

cgvObj .addPostExecReportFcn(@PostExecutionReportFcn);
where PostExecutionReportFcn is defined as:

function PostExecutionReportFcn(cgvObj, inputlndex)
end

See Also

cgv.CGV.run

addPostExecReportFcn

Topics
“Callbacks for Customized Model Behavior” (Simulink)

1-31

1 Alphabetical List

1-32

addPreExecFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute before each input data file executes

Syntax

cgvObj .addPreExecFcn(Cal IbackFcn)

Description

cgvOobj .addPreExecFcn(Cal IbackFcn) adds a callback function to cgvObj. cgvObj
is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV.run calls CallbackFcn before
executing each input data file in cgvObj. The callback function signature is:

CallbackFcn(cgvObj, inputindex)
inputIndex is a unique numeric identifier associated with input data in cgvObj.

Examples

The callback function, PreExecutionFcn, is added to cgv.CGV object, cgvObj

cgvObj .addPreExecFcn(@PreExecutionFcn);
where PreExecutionFcn is defined as:

function PreExecutionFcn(cgvObj, inputlndex)
end
See Also

cgv.CGV.run

Topics
“Callbacks for Customized Model Behavior” (Simulink)

addPreExecReportFcn

addPreExecReportFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute before each input data file executes

Syntax

cgvObj .addPreExecReportFcn(Cal lbackFcn)

Description

cgvObj .addPreExecReportFcn(Cal IbackFcn) adds a callback function to
cgvObj.cgvObj is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV.run calls
CallbackFcn before executing each input data file in cgvObj. The callback function
signature is:

CallbackFcn(cgvObj, inputlndex)
inputIndex is a unique numerical identifier associated with input data in cgvObj.

Examples

The callback function, PreExecutionReportFcn, is added to cgv.CGV object, cgvObj

cgvObj .addPreExecReportFcn(@PreExecutionReportFcn);
where PreExecutionReportFcn is defined as:

function PreExecutionReportFcn(cgvObj, inputindex)

end

See Also

cgv.CGV.run

1-33

1 Alphabetical List

Topics
“Callbacks for Customized Model Behavior” (Simulink)

1-34

addTrailerReportFcn

addTrailerReporiFcn

Class: cgv.CGV
Package: cgv

Add callback function to execute after the input data executes

Syntax

cgvObj .addTrai lerReportFcn(Cal lbackFcn)

Description

cgvObj .addTrai lerReportFcn(Cal lbackFcn) adds a callback function to cgvObj.
cgvObj is a handle to a cgv.CGV object. cgv.CGV.runcgv.CGV. run executes the input
data files in cgvObj and then calls CallbackFcn. The callback function signature is:

Cal IbackFcn(cgvobj)

Examples

The callback function, TrailerReportFcn, is added to cgv.CGV object, cgvObj

cgvObj .addTrailerReportFcn(@Trai lerReportFcn);
where TrailerReportFcn is defined as:

function TrailerReportFcn(cgvObj)
end
See Also

cgv.CGV.run

Topics
“Callbacks for Customized Model Behavior” (Simulink)

1-35

1 Alphabetical List

1-36

addCheck

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Add checks

Syntax

addCheck(obj, checkID)

Description

addCheck(obj, checklID) includes the check, checkID, in the Code Generation
Advisor. When a user selects the objective, the Code Generation Advisor includes the
check, unless another objective with a higher priority excludes the check.

Input Arguments

obj Handle to a code generation objective object previously created.
checkID Unique identifier of the check that you add to the new objective.
Examples

Add the Identify questionable code instrumentation (data 1/0) check to the
objective.

addCheck(obj, "mathworks.codegen.Codelnstrumentation®);

See Also

Simulink.ModelAdvisor

Topics
“Create Custom Code Generation Objectives”

addCheck

“About IDs” (Simulink)

1-37

1 Alphabetical List

1-38

addComplexTypeAlignment

Specify alignment boundary of a complex type

Syntax

addComplexTypeAlignment(hDataAlign, baseType, alignment)

Arguments

hDataAlign

Handle to a data alignment object, previously returned by hDataAlign =
RTW.DataAlignment.

baseType
Character vector specifying a built-in data type such as int8 or long.
alignment

A positive integer that is a power of 2 and does not exceed 128. This value specifies
the alignment boundary.

Description

The addComplexTypeAl ignment function specifies the alighment boundary of real and
complex data members of a complex type. The starting memory address of the real and
imaginary part of complex variables produced by the code generator with the specified
type are a multiple of the specified alignment boundary. The code generator replaces
operations in generated code if a code replacement table entry has a complex argument
with a data alignment requirement that is less than or equal to the alignment boundary
value and the entry satisfies all other code replacement match criteria.

To use this function, your code replacement library registration file must include
additional compiler data alignment information, such as alignment syntax.

addComplexTypeAlignment

Examples

Specify a 16-byte alignment boundary for complex Int8 types by adding the following
lines of code to your code replacement library registration file.

da = RTW.DataAlignment;
addComplexTypeAlignment(da, "int8", 16);

See Also

Topics

“Data Alignment for Code Replacement”
“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2014a

1-39

1 Alphabetical List

1-40

addConceptualArg

Add conceptual argument to array of conceptual arguments for code replacement table
entry

Syntax

addConceptualArg(hEntry, arg)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement entry class, such as hEntry = RTW.TFICFunctionEntry or hEntry
= RTW.TFICOperationEntry.

arg

Argument, such as returned by arg = getTFflArgFromString(name,
datatype), to be added to the array of conceptual arguments for the code
replacement table entry.

Description

The addConceptualArg function adds a specified conceptual argument to the array of
conceptual arguments for a code replacement table entry.

Examples

In the following example, the addConceptualArg function is used to add conceptual
arguments for the output port and the two input ports for an addition operation.

hLib = RTW.TflTable;
% Create entry for addition of built-in uint8 data type

op_entry = RTW.TFICOperationEntry;
op_entry.setTflCOperationEntryParameters(...

addConceptual Arg

“Key”®,

"Priority”,
"SaturationMode”,
"RoundingModes”,

" ImplementationName”,

"ImplementationHeaderFile",
"ImplementationSourceFile”,

arg = hLib.getTflArgFromString("yl","uint87);
arg.10Type = "RTW_I0_OUTPUT";
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“ul®,“uint87);
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“u2®,"uint87);
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsTolmplementation();

hLib.addEntry(op_entry);

See Also

getTfFlArgFromString

Topics
“Define Code Replacement Mappings”

"RTW_OP_ADD",

90, ...
"RTW_SATURATE_ON_OVERFLOW™, ...
{"RTW_ROUND_UNSPECIFIED"}, ...
"u8_add_u8 u8", .

"u8_add_u8 u8.h", .

"u8_add_u8 u8.c");

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

141

1 Alphabetical List

1-42

addDWorkArg

Add DWork argument for semaphore entry in code replacement table

Syntax

addDWorkArg(hEntry, arg)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating
a code replacement semaphore table entry class, using hEntry =
RTW.TFICSemaphoreEntry.

arg

Argument, such as returned by arg = getTfIDWorkFromString(name,
datatype), to be added to the arguments for the code replacement table entry.

Description

The addDWorkArg function adds a specified DWork argument to the arguments for a
semaphore entry in a code replacement table.

Examples

In the following example, the addDWorkArg function is used to add a DWork argument
named d1 to the arguments for a semaphore entry in a code replacement table.

hLib = RTW.TflTable;
sem_entry = RTW.TFICSemaphoreEntry;

% DWork Arg

arg = hLib.getTfIDWorkFromString("d1", "void*");

addDWorkArg

sem_entry.addDWorkArg(arg);

hLib.addEntry(sem_entry);

See Also

getTfIDWorkFromString

Topics

“Semaphore and Mutex Function Replacement”
“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2013a

1-43

1 Alphabetical List

1-44

addConfigSet

Class: cgv.CGV
Package: cgv

Add configuration set

Syntax

cgvObj .addConfigSet(configSet)

cgvObj .addConfigSet("configSetName™)

cgvObj .addConfigSet("file", "configSetFileName*™)

cgvObj .addConfigSet("file", "configSetFileName", "variable®,
"configSetName*™)

Description

cgvObj .addConfigSet(configSet) is an optional method that adds the configuration
set to the object. cgvObj is a handle to a cgv.CGV object. configSet is a variable that
specifies a configuration set.

cgvObj .addConfigSet("configSetName®) is an optional method that adds the
configuration set to the object. configSetName is a character vector that specifies the
name of the configuration set in the workspace.

cgvObj .addConfigSet("file", "configSetFileName™) is an optional method that
adds the configuration set to the object. configSetFileName is a character vector that
specifies the name of the file that contains only one configuration set.

cgvObj .addConfigSet("file", "configSetFileName~", "variable~,
"configSetName™) is an optional method that adds the configuration set to the object.
The file contains one or more configuration sets. Specify the name of the configuration set
to use.

This method replaces the configuration parameter values in the model with the values
from the configuration set that you add. The object applies the configuration set when
you call the run method. You can add only one configuration set for each cgv.CGV object.

addConfigSet

See Also

Topics
“About Model Configurations” (Simulink)
“Programmatic Code Generation Verification”

1-45

1 Alphabetical List

1-46

addEntry

Add table entry to collection of table entries registered in code replacement table

Syntax

addEntry(hTable, entry)

Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW.TfITable.

entry

Handle to a function or operator entry that you have constructed after calling
hEntry = RTW.TFICFunctionEntry or hEntry = RTW.TFICOperationEntry

Description

The addEntry function adds a function or operator entry that you have constructed to
the collection of table entries registered in a code replacement table.

Examples

In the following example, the addEntry function is used to add an operator entry to a
code replacement table after the entry is constructed.

hLib = RTW.TflTable;
% Create an entry for addition of built-in uint8 data type

op_entry = RTW.TFICOperationEntry;
op_entry.setTflCOperationEntryParameters(...

“Key~, "RTW_OP_ADD™, ...

"Priority”, 90, ...

“SaturationMode”, "RTW_SATURATE_ON_OVERFLOW™, ...
“RoundingModes™, {"RTW_ROUND_UNSPECIFIED"}, ...
" ImplementationName”, "u8_add_u8 u8", ...

addEntry

"ImplementationHeaderFile", "u8_add_u8_u8.h",
"ImplementationSourceFile”, "u8_add_u8_u8.c");

arg = hLib.getTflArgFromString("yl","uint87);
arg.10Type = "RTW_I0_OUTPUT";
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“ul®,"uint87);
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“u2®, "uint87);
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsTolmplementation();

addEntry(hLib, op_entry);

See Also

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

1-47

1 Alphabetical List

1-48

addinputData

Class: cgv.CGV
Package: cgv

Add input data

Syntax

cgvObj .addInputData(inputName, inputDataFile)

Description

cgvObj .addInputData(inputName, inputDataFile) adds an input data file to
cgvObj.cgvObj is a handle to a cgv.CGV object. inputName is a unique identifier,
which cgvObj associates with the input data in inputDataFile.

Input Arguments

inputName

inputName is a unique numeric or character identifier, which is associated with the
input data in inputDataFile.

inputDataFile

inputDataFi le is an input data file, with or without the .mat extension. cgvObj uses
the input data when the model executes during cgv.CGV. run. If the input file is in the
working folder, the cgvObj does not require the path. add InputData does not qualify
that the contents of inputDataFi le relate to the inputs of the model. Data that is not
used by the model will not throw a warning or error.

Tips

* When calling add InputData you can modify configuration parameters by including
their settings in the input file, inputDataFile.

addInputData

+ If you omit calling add InputData before executing the model, the cgv.CGV object
runs once using data in the base workspace.

* The cgvObj uses the inputName to identify the input data associated with output
data and output data files. cgvObj passes inputName to a callback function to
identify the input data that the callback function uses.

See Also

cgv.CGV.run

Topics
“Verify Numerical Equivalence with CGV”

1-49

1 Alphabetical List

addParam

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Add parameters

Syntax

addParam(obj, paramName, value)

Description

addParam(obj, paramName, value) adds a parameter to the objective, and defines
the value of the parameter that the Code Generation Advisor verifies in Check model
configuration settings against code generation objectives.

Input Arguments

obj Handle to a code generation objective object previously created.
paramName Parameter that you add to the objective.

value Value of the parameter.

Examples

Add DefaultParameterBehavior to the objective, and specify the parameter value as
Inlined.

addParam(obj, "DefaultParameterBehavior®, "Inlined”);

See Also

get_param

1-50

addParam

Topics
“Create Custom Code Generation Objectives”

1-51

1 Alphabetical List

1-52

addPostloadFiles

Class: cgv.CGV
Package: cgv

Add files required by model

Syntax

cgvObj .addPostLoadfiles({FilelList})

Description

cgvObj .addPostLoadfiles({FileList}) is an optional method that adds a list of
MATLAB and MAT-files to the object. cgvObj is a handle to a cgv.CGV object. cgvObj
executes and loads the files after opening the model and before running tests. FileList
is a cell array of names of MATLAB and MAT-files in the testing directory that the model
requires to run.

Note: Subsequent cgvObj .addPostLoadFiles calls to the same cgv.CGV object
replaces the list of MATLAB and MAT-files of that object.

See Also

Topics
“Verify Numerical Equivalence with CGV”
“Callbacks for Customized Model Behavior” (Simulink)

address

address

Memory address and page value of symbol in IDE

Syntax

a = address(IDE Obj,symbol,scope)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++
+ Texas Instruments Code Composer Studio v3

Description

The a = address(IDE 0Obj,symbol,scope) method returns the memory address of
the first matching symbol in the symbol table of the most recently loaded program.

Because the address method returns the address and page values as a structure, your
programs can use the values directly. For example, the read and write can use a as an
input.

If the address method does not find the symbol in the symbol table, it generates a
warning and returns a null value.

Input Arguments

a

Use a as a variable to capture the return values from the address method.
IDE_Obj

IDE Obj is a handle for an instance of the IDE. Before using a method, use the
constructor function for your IDE to create IDE_Obj.

1-53

1 Alphabetical List

1-54

symbol

symbol is the name of the symbol for which you are getting the memory address and
page values.

Symbol names are case sensitive.

For address to return an address, the symbol must be a valid entry in the symbol table.
If the address method does not find the symbol, it generates a warning and leaves a
empty.

scope
Optionally, you set the scope of the address method. Enter "local® or "global ". Use

"local "™ when the current scope of the program is the desired function scope. If you omit
the scope argument, the address method uses " local * by default.

Output Arguments

If the address method does not find the symbol, it generates a warning and does not
return a value for a.

The address method only returns address information for the first matching symbol in
the symbol table.

For Code Composer Studio

The return value, a, is a numeric array with the symbol's address offset, a(1), and page,

a(2).

With TT C6000™ processors, the memory page value is 0.

For VisualDSP++

With VisualDSP++, address requires a linker command file (lcf) in your project.

The return value a is a numeric array with the symbol's start address, a(1), and
memory type, a(2).

address

Examples

After you load a program to your processor, address lets you read and write to specific
entries in the symbol table for the program. For example, the following function reads the
value of symbol 'ddat' from the symbol table in the IDE.

ddatv = read(IDE _Obj,address(IDE Obj,"ddat"),"double”,4)

ddat is an entry in the current symbol table. address searches for the string ddat and
returns a value when it finds a match. read returns ddat to MATLAB software as a
double-precision value as specified by the string "double”.

To change values in the symbol table, use address with write:

write(IDE_Obj ,address(IDE_Obj,"ddat"),double([pi 12.3 exp(-1)..-.
sin(pi/4)1))

After executing this write operation, ddat contains double-precision values for m, 12.3,
e, and sin(/4). Use read to verify the contents of ddat:

ddatv = read(IDE_Obj ,address(IDE_Obj,"ddat"),"double*,4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also

load | read | symbol | write

Introduced in R2011a

1-55

1 Alphabetical List

1-56

adivdsp

Create handle object to interact with VisualDSP++ IDE

Syntax

IDE_Obj = adivdsp

IDE_Obj = adivdsp("propnamel®,propvaluel, "propname2” ,propvalue2, ..
, "timeout” ,value)

IDE_Obj = adivdsp("my_session®)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

Description

If the IDE is not running, IDE_Obj = adivdsp opens the VisualDSP++ software for
the most recent active session. After that, it creates an object, IDE_Obj, that references
the newly opened session. If the IDE is running, adivdsp returns object IDE_Obj that
connects to the active session in the IDE.

Note: The output object name (left side argument) you provide for adivdsp cannot begin
with an underscore, such as _IDE_Obj.

adivdsp creates an interface between MATLAB software and Analog Devices VisualDSP
++ software. The first time you use adivdsp, supply a session name as an input
argument (refer to the next syntax).

IDE_Obj = adivdsp("sessionname®, "name”, "procnum®, "number”, .. .) returns
an object handle IDE_Obj that you use to interact with a processor in the IDE from
MATLAB.

adivdsp

Use the debug methods with this object to access memory and control the execution of the
processor.

The adivdsp function interprets input arguments as object property definitions. Each
property definition consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair). Although you can define

a number of adivdsp object properties when you create the object, there are several
important properties that you must provide during object construction. These properties
must be delineated when you create the object. The required input arguments are as
follows:

+ sessionname — Specifies the session to connect to. This session must exist in the
session list. adivdsp does not create new sessions. The resulting object refers to a
processor in sessionname. To see the list of sessions, use listsessions at the
MATLAB command prompt.

* procnum— Specifies the processor to connect to in sessionname. The adivdsp object
only supports connecting to processor 0. As such, the default value for procnum is
0 for the first processor on the board. If you omit the procnum argument, adivdsp
connects to the first processor.

After you build the adivdsp object IDE_Obj, you can review the object property values
with get, but you cannot modify the sessionname and procnum property values.

To connect to the active session in IDE, omit the sessionname property in the syntax.
If you do not pass sessionname as an input argument, the object defaults to the active
session in the IDE.

Use listsessions to determine the number for the desired DSP processor. If your IDE
session 1is single processor or to connect to processor zero, you can omit the procnum
property definition. If you omit the procnum argument, procnum defaults to O (zero-
based).

IDE_Obj = adivdsp("propnamel” ,propvaluel, "propname2” ,propvalue2,..
, "timeout” ,value) sets the global time-out value to value in IDE_Obj. MATLAB
waits for the specified time-out value to get a response from the IDE application. If
the IDE does not respond within the allotted time-out period, MATLAB exits from the
evaluation of this function.

If the session exists in the session list and the IDE is not already running, IDE_Obj
= adivdsp("my_session") connects to my_session. In this case, MATLAB starts
VisualDSP++ IDE for the session named my_session.

1-57

1 Alphabetical List

1-58

The following list shows some other possible cases and results of using adivdsp to
construct an object that refers to my_session.

+ If my_session does not exist in the session list and the IDE is not already running,
MATLAB returns an error stating that my session does not exist in the session list.

* When my_session is the current active session and the IDE is already running,
MATLAB connects to the IDE for this session.

+ If my_session is not the current active session, but exists in the session list, and the
IDE is already running, MATLAB displays a dialog box asking if you want to switch
to my_session. If you choose to switch to my_session, the existing handles you have
to other sessions in the IDE become invalid. To connect to the other sessions you use
adivdsp to recreate the objects for those sessions.

+ If my_session does not exist in the session list and the IDE is already running,
MATLAB returns an error, explaining that the session my_session does not exist in
the session list.

Examples

These examples show some of the operation of adivdsp.

IDE_Obj = adivdsp("sessionname®,"my_session", "procnum®,0);
returns a handle to the first DSP processor for session my_session.

IDE_Obj = adivdsp without input arguments constructs the object IDE_Obj with
the default property values, returning a handle to the first DSP processor for the active
session in the IDE.

IDE_Obj = adivdsp("sessionname”, "my_session"); returns a handle to the first
DSP processor for the session my_session.

See Also

listsessions

Introduced in R2011a

adivdspsetup

adivdspsetup

Configure the code generator to interact with VisualDSP++ IDE

Syntax

adivdspsetup

IDEs

This function supports the following IDEs:

Analog Devices VisualDSP++

Description

Enter adivdspsetup at the MATLAB command line when you are setting up the code
generator to interact with VisualDSP++ for the first time. This action displays a dialog
box to specify where to install a plug-in for VisualDSP++. The default value for Folder is
the VisualDSP++ system folder. You can specify folders for which you have write access.
When you click OK, the software adds the plug-in to the folder and registers the plug-in
with the VisualDSP++ IDE.

Examples

1 At the MATLAB command line, enter: adivdspsetup. This action opens the
following dialog box:

1-59

1 Alphabetical List

m Embedded IDE Link Configuration for Analog Devices{R) ¥isualDs... m

Flugin Feqistration

Folder: Il::'l,pn:ugram files\analog devices|visualdsp 5.00system)| Browse, ., |

(] 4 Cancel | Help | Apply

2 Click Browse, locate the system folder for VisualDSP++, and click OK. This action
registers the MathWorks plugin to the VisualDSP++ IDE.

See Also

adivdsp

Introduced in R2011a

1-60

animate

animate

Run application on processor to breakpoint

Syntax

animate(IDE 0Obj)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

animate(IDE _0bj) starts the processor application, which runs until it encounters a
breakpoint in the code. At the breakpoint, application execution halts and CCS Debugger
returns data to the IDE to update the windows not connected to probe points. After
updating the display, the application resumes execution and runs until it encounters
another breakpoint. The run-break-resume process continues until you stop the
application from MATLAB software with the halt function or from the IDE.

While running scripts or files in MATLAB software, you can use animate to update the
IDE with information as your script or program runs.

Using animate with Multiprocessor Boards

When you use animate with a ticcs object IDE_Obj that comprises more than one
processor, such as an OMAP processor, the method applies to each processor in your

IDE Obj object. This action causes each processor to run a loaded program just as it does
for the single processor case.

See Also

halt | restart | run

1-61

1 Alphabetical List

Introduced in R2011a

1-62

annotate

annotate

Color profiled model components or open model with profiled components colored

Syntax

annotate(executionProfile)

Description

When you run a SIL or PIL simulation with code execution profiling, the software
generates the workspace variable executionProfile, specified in Configuration
Parameters > Code Generation > Verification > Workspace variable.

annotate(executionProfile) colors the profiled model components blue. If the model
is closed, this command opens the model, with profiled components colored blue. Clicking
a blue component opens a window that displays execution-time metrics for generated
code.

See Also

report

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Introduced in R2016b

1-63

1 Alphabetical List

1-64

attachToModel

Class: RTW.ModelCPPClass
Package: RTW

Attach model-specific C++ class interface to loaded ERT-based Simulink model

Syntax

attachToModel (obj, modelName)

Description

attachToModel (obj, modelName) attaches a model-specific C++ class interface to a
loaded ERT-based Simulink model.

Input Arguments

obj Handle to a model-specific C++ class interface
control object, such as a handle previously returned
by obj = RTW.ModelCPPArgsClassorobj =
RTW.ModelCPPDefaultClass.

modelName Character vector specifying the name of a loaded ERT-based
Simulink model to which the object is going to be attached.

Alternatives

The Configure C++ Class Interface button on the Interface pane of the Simulink
Configuration Parameters dialog box launches the Configure C++ class interface dialog
box, where you can flexibly control the C++ class interfaces that are generated for your
model. Once you validate and apply your changes, you can generate code based on your
C++ class interface modifications. See “Customize C++ Class Interfaces Using Graphical
Interfaces”.

attachToModel

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

1-65

1 Alphabetical List

1-66

attachToModel

Class: RTW.ModelSpecificCPrototype
Package: RTW

Attach model-specific C function prototype to loaded ERT-based Simulink model

Syntax

attachToModel (obj, modelName)

Description

attachToModel (obj, modelName) attaches a model-specific C function prototype to a
loaded ERT-based Simulink model.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW._ModelSpecificCPrototype.

modelName Character vector specifying the name of a loaded ERT-based
Simulink model to which the object is going to be attached.

Alternatives

Click the Configure Model Functions button on the Code Generation > Interface
pane of the Configuration Parameters dialog box for flexible control over the model
function prototypes that are generated for your model. Once you validate and apply your
changes, you can generate code based on your function prototype modifications. See
“Configure Function Prototypes Using Graphical Interfaces”.

attachToModel

See Also

Topics
“Control Generation of Function Prototypes”

1-67

1 Alphabetical List

1-68

build

Build or rebuild current project

Syntax

[result,numwarns] = build(IDE Obj,timeout)
build(IDE Obj,"all™)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

[result,numwarns] = build(IDE_0bj ,timeout) incrementally builds the active
project. Incremental builds recompile only source files in your project that you changed or
added after the most recent build. bui Id uses the file time stamp to determine whether
to recompile a file. After recompiling the source files, bui ld links the object files to make
a new program file.

The value of result is 1 when the build process completes. The value of numwarns is the
number of compilation warnings generated from the build process.

The timeout argument defines the number of seconds MATLAB waits for the IDE to
complete the build process. If the IDE exceeds the timeout period, this method returns

a timeout error immediately. The timeout error does not terminate the build process

in the IDE. The IDE continues the build process. The timeout error indicates that the
build process did not complete before the specified timeout period expired. If you omit the
timeout argument, the build method uses a default value of 1000 seconds.

bui ld(IDE_Obj,"all™) rebuilds the files in the active project.

build

See Also

isrunning | open

Introduced in R2011a

1-69

1 Alphabetical List

ccsboardinfo

Information about boards and simulators known to IDE

Syntax

ccsboardinfo

boards

IDEs

ccsboardinfo

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

ccsboardinfo returns configuration information about each board and processor
installed and recognized by CCS. When you issue the function, ccsboardinfo returns
the following information about each board or simulator.

Installed Board
Configuration Data

Configuration ltem
Name

Description

Board number boardnum The number CCS assigns to the board or
simulator. Board numbering starts at O for the
first board. You also use boardnum when you
create a link to the IDE.

Board name boardname The name assigned to the board or simulator.

Usually, the name is the board model name,
such as F28335 XDS100 USB Emulator. If you
are using a simulator, the name tells you which
processor the simulator matches, such as F28335
Device Simulator. If you renamed the board
during setup, this item displays the board name.

1-70

cesboardinfo

Installed Board
Configuration Data

Configuration ltem
Name

Description

Processor number

procnum

The number assigned by CCS to the processor on
the board or simulator. When the board contains
more than one processor, CCS assigns a number
to each processor, numbering from O for the

first processor on the first board. For example,
when you have two boards, the first processor

on the first board is procnum = 0, and the first
and second processors on the second board are
procnum =1 and procnum = 2. You also use this
property when you create a link to the IDE.

Processor name

procname

Provides the name of the processor. Usually the
name is CPU, unless you assign a different name.

Processor type

proctype

Gives the processor model, such as
TMS320C2800 for the C28x series processors.

Each row in the table that you see displayed represents one digital signal processor,
either on a board or simulator. As a consequence, you use the information in the table in
the function ticcs to identify a selected board in your PC.

boards = ccsboardinfo returns the configuration information about your installed
boards in a slightly different manner. Rather return the table of the information, the
method returns a list of board names and numbers. In that list, each board has an
structure named proc that contains processor information. For example

boards = ccsboardinfo

returns

boards
number: 0
name: "F28335 Device Simulator”
proc: [1x1 struct]

where the structure proc contains the processor information for the F28335 device
simulator:

boards.proc

1-71

1 Alphabetical List

ans =

number: O
name: "CPU*
type: "TMS320F283xx*

Reviewing the output from both function syntaxes shows that the configuration
information is the same.

To connect with a specific board when you create an IDE handle object, combine this
syntax with the dot notation for accessing elements in a structure. Use the boardnum
and procnum properties in the boards structure. For example, when you enter

boards = ccsboardinfo;

boards(1) .name returns the name of your second installed board and
boards(1) .proc(2) .name returns the name of the second processor on the second
board. To create a link to the second processor on the second board, use

IDE_Obj = ticcs("boardnum® ,boards(1) .number, "procnum®, ...
boards(1) .proc(2).name);

Examples

On a PC with both F28335 simulator and F28027 with XDS100 USB emulator are
installed,

ccsboardinfo

returns something like the following table. Your display may differ slightly based on
what you called your boards when you configured them in CCS Setup Utility:

Board Board Proc Processor Processor
Num Name Num Name Type

0 F28027 XDS100 USB Emulator 0 TMS320C2800_0 TMS320C2800

1 F28335 Device Simulator 0 CPU TMS320F283xx

See Also

info | ticcs

Introduced in R2011a

1-72

cd

cd

Set working folder in IDE

Syntax

wd = cd(IDE_Obj)
cd(IDE_Obj ,folder)

IDEs

This function supports the following IDEs:

Analog Devices Visual DSP++

Texas Instruments Code Composer Studio v3

Description

wd = cd(IDE_Obj) assigns the IDE working folder to the variable, wd. which you
reference via the IDE handle object, IDE_Obj.

cd(IDE_Obj ,folder) sets the IDE working folder to "folder®. "folder" can be

a path relative to your working folder, or an absolute path. The intended folder must
exist. cd does not create a folder. Setting the IDE folder does not change your MATLAB
Current Folder.

cd alters the default folder for open and load. Loading a new workspace file also
changes the working folder for the IDE.

See Also

dir | load | open

Introduced in R2011a

1-73

1 Alphabetical List

1-74

cgv.CGV class

Package: cgv

Verify numerical equivalence of results

Description

Executes a model in different environments such as, simulation, Software-In-the-Loop
(SIL), or Processor-In-the-Loop (PIL) and stores numerical results. Using the cgv.CGV
class methods, you can create a script to verify that the model and the generated code
produce numerically equivalent results.

cgv.CGV and cgv.ConFTig use two of the same properties. Before executing a cgv.CGV
object, use cgv.Config to verify the model configured for the mode of execution that you
specify. If the top model is set to normal simulation mode, referenced models set to PIL
mode are changed to Accelerator mode.

Construction

cgvObj = cgv.CGV(model_name) creates a handle to a code generation verification
object using the default parameter values. model _name is the name of the model that
you are verifying.

cgvObj = cgv.CGV(model name,Name,Value) constructs the object using the
parameter values, specified as Name, Value pair arguments. Parameter names and
values are not case sensitive.

Input Arguments

model name

Name of the model that you are verifying.
Name-Value Pair Arguments

Optional comma-separated pairs of Name ,Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside single

cgv.CGV class

quotes ("). You can specify several name-value pair arguments in a variety of orders,

such as Namel,Valuel, ..,NameN, ValueN.

"ComponentType*

Define the SIL or PIL approach

Value

Description

topmodel (default)

Top-model SIL or PIL simulation and
standalone code interface mode.

modelblock

Model block SIL or PIL simulation and
model reference target code interface mode.

If mode of execution is simulation (Connectivity is sim), choosing either value for
ComponentType does not alter simulation results.

Default: topmodel
"Connectivity”

Specify mode of execution

Value

Description

simor normal (default)

Mode of execution is Normal simulation.

sil Mode of execution is SIL.
pil Mode of execution is PIL.
Properties

Description

Specify a description of the object.
Default: * " (null character vector)
Name

Specify a name for the object.

1-75

1 Alphabetical List

1-76

Default: * " (null character vector)

Methods

activateConfigSet
addBaseline

addHeaderReportFcn
addPostExecFcn
addPostExecReportFcn
addPreExecFcn
addPreExecReportFcn
addTrailerReportFen

addConfigSet
addInputData
addPostLoadFiles
compare
copySetup

createToleranceFile

getOutputData
getSavedSignals

getStatus
plot

run
setMode

Activate configuration set of model
Add baseline file for comparison

Add callback function to execute before
executing input data in object

Add callback function to execute after each
input data file is executes

Add callback function to execute after each
input data file executes

Add callback function to execute before
each input data file executes

Add callback function to execute before
each input data file executes

Add callback function to execute after the
input data executes

Add configuration set

Add input data

Add files required by model
Compare signal data

Create copy of cgv.CGV object

Create file correlating tolerance
information with signal names

Get output data

Display list of signal names to command
line

Return execution status
Create plot for signal or multiple signals
Execute CGV object

Specify mode of execution

cgv.CGV class

setOutputDir Specify folder
setOutputFile Specify output data file name

Copy Semantics

Handle. To learn how handle classes change copy operations, see Copying Objects
(MATLAB) in the MATLAB Programming Fundamentals documentation.

Examples

The general workflow for testing a model for numerical equivalence using the cgv.CGV
class is to:

1 Create a cgv.CGV object, cgvOb], for each mode of execution and use the cgv.CGV
set up methods to configure the model for each execution. The set up methods are:
+ addInputData
addPostLoadFiles
+ setOutputDir
setOutputFile
+ addCallBack
+ addConfigSet
2 Run the model for each mode of execution using the cgvObj . run method.
3 Use the cgv.CGV access methods to get and evaluate the data. The access methods
are:
* getOutputData
getSavedSignals
+ plot
compare
An object should be run only once. After the object is run, the set up methods are not

used for that object. You then use the access methods for verifying the numerical
equivalence of the results.

1-77

1 Alphabetical List

Note: Simulink Test™ is a separate product that provides additional capabilities for SIL
and PIL testing, for example, test sequence construction and test management.

See Also

cgv.Config

Topics
“Verify Numerical Equivalence with CGV”
“Using Code Generation Verification API”

1-78

cgv.Config class

cgv.Config class

Package: cgv

Check and modify model configuration parameter values

Description

Creates a handle to a cgv.ConfFig object that supports checking and optionally
modifying models for compatibility with various modes of execution that use generated
code, such as, Software-In-the-Loop (SIL) or Processor-In-the-Loop (PIL).

To execute the model in the mode that you specify, you might need to make additional
modifications to the configuration parameter values or the model beyond those
configured by the cgv.Con¥Fig object.

By default, cgv.Config modifies configuration parameter values to the values that

it recommends, but does not save the model. Alternatively, you can use cgv.Config
parameters to modify the default specification. For more information, see the properties,
ReportOnly and SaveModel.

If you use cgv.Config to modify a model, do not use referenced configuration sets in
that model. If a model uses a referenced configuration set, update the model with a copy
of the configuration set, by using the Simulink.ConfigSetRef.getRefConfigSet
method.

If you use cgv.Config on a model that executes a callback function, the callback
function might modify configuration parameter values each time the model loads. The
callback function might revert changes that cgv.Config made. If this change occurs,
the model might not be set up for SIL or PIL. For more information, see “Callbacks for
Customized Model Behavior” (Simulink).

Construction

cfgObj = cgv.Config(model_name) creates a handle to a cgv.ConTig object,
cfgObj, using default values for properties. model name is the name of the model that
you are checking and optionally configuring.

1-79

1 Alphabetical List

cfgObj = cgv.Config(model_name, Name, Value) constructs the object using
options, specified as parameter name and value pairs. Parameter names and values are
not case sensitive.

Name can also be a property name and Value is the corresponding value. Name must

appear inside single quotes (" *). You can specify several name-value pair arguments in a
variety of orders, such as Namel,Valuel,..,NameN,ValueN.

Properties

CheckOutports

Specify whether to compile the model and check that the model outports configuration is
compatible with the cgv.CGV object. If your script fixes errors reported by cgv.Config,
you can set CheckOutports to offF.

Valve Description

on (default) Compile the model and check the model
outports configuration

off Do not compile the model or check the
model outports configuration

ComponentType
Define the SIL or PIL approach

If mode of execution is simulation (connectivity is sim), choosing either value for
ComponentType does not alter simulation results. However, cgv.Config recommends
configuration parameter values based on the value of ComponentType.

Value Description

topmodel (default) Top-model SIL or PIL simulation and
standalone code interface mode.

modelblock Model block SIL or PIL simulation and
model reference target code interface mode.

1-80

cgv.Config class

Connectivity

Specify mode of execution

Value Description

sim (default) Mode of execution is simulation.
Recommends changes to a subset of the
configuration parameters that SIL and PIL
targets require.

sil Mode of execution is SIL. Requires that
the system target file is set to "ert.tlc”
and that you do not use your own external
target. Recommends changes to the
configuration parameters that SIL targets
require.

pil Mode of execution is PIL with custom
connectivity that you provide using the PIL
Connectivity API. Recommends changes

to the configuration parameters that PIL
targets with custom connectivity require.

LogMode

Specify the Signal logging and Output parameters on the Data Import/Export pane
of the Configuration Parameters dialog box.

Value Description

SignallLogging Log signal data to a MATLAB workspace
variable during execution.

This parameter selects the Data Import/
Export > Signal logging parameter in
the Configuration Parameters dialog box.

SaveOutput Save output data to a MATLAB workspace
variable during execution.

This parameter selects Data Import/
Export > Output parameter in the
Configuration Parameters dialog box.

1-81

1 Alphabetical List

1-82

Valve Description
The Output parameter does not save bus
outputs.

ReportOnly

The ReportOnly property specifies whether cgv.Config modifies the recommended
values of the configuration parameters of the model.

If you set ReportOnly to on, SaveModel must be off.

Valve Description

off (default) cgv.Config automatically modifies the
configuration parameter values that it
recommends for the model.

on cgv.Config does not modify the
configuration parameter values that it
recommends for the model.

SaveModel

Specify whether to save the model with the configuration parameter values

recommended by cgv.Config.

If you set SaveModel to "on", ReportOnly must be "off".

Valve Description
off (default) Do not save the model.
on Save the model in the working folder.

Methods
configModel

displayReport

Determine and change configuration
parameter values

Display results of comparing configuration
parameter values

cgv.Config class

getReportData Return results of comparing configuration
parameter values

Copy Semantics

Handle. To learn how handle classes change copy operations, see Copying Objects
(MATLAB) in the MATLAB Programming Fundamentals documentation.

Examples

Configure the rtwdemo_iec61508 model for top-model SIL. Then view the changes at
the MATLAB Command Window:

% Create a cgv.-Config object and configure the model for top-model SIL.

cgvCfg = cgv.Config("rtwdemo_iec61508", "LogMode®, "SaveOutput®, ...
“connectivity”, "sil");

cgvCfg.configModel ();

% Display the results of what the cgv.Config object changed.

cgvCfg.displayReport();

% Close the rtwdemo_iec61508 model.

bdclose("rtwdemo_iec61508%);

See Also

See Also
cgv.CGV

Topics
“Programmatic Code Generation Verification”

1-83

1 Alphabetical List

1-84

coder.dataAlignment

Specify data alignment for global or entry-point/exported function input and output
arguments

Syntax

coder.dataAlignment(“varName® ,align_value)

Description

coder.dataAlignment(“varName"® ,align_value) specifies data alignment in
MATLAB code for the variable (varName), which is imported data or global (exported)
data. The code generator aligns the imported or exported data to the alignment boundary
(align_value).

Examples

Data Alignment for Imported Data

An example function that specifies data alignment for imported data.

function y = importedDataExampleFun(x1,x2)

coder .dataAlignment("x1",16); % Specifies information
coder .dataAlignment("x2",16); % Specifies information
coder .dataAlignment("y",16); % Specifies information

y = x1 + Xx2;
end
Data Alignment for Exported Data

An example function that specifies data alignment for exported data.

function a = exportedDataExampleFun(b)

coder.dataAlignment

global z;
coder .dataAlignment(“z",8);

a=>b+ z;
end

. “Data Alignment for Code Replacement”

. “Define Code Replacement Mappings”

. “What Is Code Replacement Customization?”
. “What Is Code Replacement?”

Input Arguments

*varName"® — Variable name
character array

The varName is a character array of the variable name that requires alignment
information specification.

align_value — Data alignment boundary valve
integer

The align_value is an integer number which should be a power of 2, from 2 through
128. This number specifies the power-of-2 byte alignment boundary.

Limitations

Limitations on variables supported by coder .dataAl ignment directive:
* Only use coder.dataAl ignment to specify alignment information for function
inputs, outputs, and global variables.

+ coder .dataAlignment supports only matrix types, including matrix of complex
types.

+ For exported custom storage classes (CSCs), coder .dataAl ignment supports only
ExportedGlobal. You can specify alignment information for any imported CSCs.

1-85

1 Alphabetical List

+ The code generator ignores coder .dataAl ignment for non-ERT or non-ERT derived
system target files.

* Global variables tagged using the coder .dataAl ignment directive from within a
MATLAB function block are ignored. Set the alignment value on the corresponding
Data Store Memory.

See Also

See Also

codegen

Topics

“Data Alignment for Code Replacement”
“Define Code Replacement Mappings”

“What Is Code Replacement Customization?”
“What Is Code Replacement?”

Introduced in R2017a

1-86

coder.replace

coder.replace

Replace current MATLAB function implementation with code replacement library
function in generated code

Syntax

coder.replace()
coder.replace("-errorifnoreplacement™)
coder.replace("-warnifnoreplacement®)

Description

coder.replace() replaces the current function implementation with a code
replacement library function. If a match is not found in the code replacement library,
code is generated without a replacement for the current function. coder.replace is a
code generation function. It does not alter MATLAB code or MEX function generation.

During code generation, if you include coder.replace in a MATLAB function, fcn, it
performs a code replacement library lookup for the following function signature:

[yl_type, y2_type,..., yn_type]=fcn(x1l_type, x2_type,...,xn_type)

vyl type, y2_type,..., yn_type are the data types of the outputs of MATLAB
function fcn. x1_type, X2 _type, ...,Xn_type are the data types of the inputs

of fcn. coder.replace derives the output types of the function based on the
implementation in the MATLAB function. At code generation, the contents of fcn are
discarded and replaced with a function call that is registered in the code replacement
library as a replacement for fcn.

coder.replace("-errorifnoreplacement™) replaces the current function
implementation with a code replacement library function. If a match is not found, code
generation stops. An error message describing the code replacement library lookup
failure is generated.

coder.replace("-warnifnoreplacement”) replaces the current function
implementation with a code replacement library function. If match is not found, code is
generated for the current function. A warning describing the code replacement library
lookup failure is generated during code generation.

1-87

1 Alphabetical List

Examples

Replace a MATLAB function with custom code

Replace a MATLAB function with a custom implementation that is registered in the code
replacement library.

1 Write a MATLAB function, calculate, that you want to replace with a custom
implementation, replacement_calculate_impl.c, in the generated code.

function y = calculate(x)
% Search in the code replacement library for replacement
% and use replacement function it available
% Error if not found
coder.replace("-errorifnoreplacement®);
y = sqrt(x);
end

2 Write a MATLAB function, top_function, that calls calculate

function out = top_function(in)
p = calculate(in);
out = exp(p);

end

3 Create a file named crl_table_calculate.m that describes the
function entries for a code replacement table. The replacement
function replacement_calculate_impl.c and header file
replacement_calculate_impl.h must be on the path.

hLib = RTW.TflITable;

Yo ————————— entry: calculate —--————————-
hEnt = RTW.TFICFunctionEntry;
setTFICFunctionEntryParameters(hEnt, ...
"Key*®, "calculate®, ...
"Priority", 100, ...
"ImplementationName®, “replacement_calculate_impl~®, ...
"ImplementationHeaderFile", "replacement_calculate_impl_h", __.
"ImplementationSourceFile”, "replacement_calculate_impl.c")
% Conceptual Args

arg = getTflArgFromString(hEnt, "yl1®,"double®);

arg.10Type = "RTW_I0_OUTPUT";
addConceptualArg(hEnt, arg);

1-88

coder.replace

arg = getTflArgFromString(hEnt, "ul®,"double®);
addConceptualArg(hEnt, arg);

% Implementation Args

arg = getTflArgFromString(hEnt, "yl1®,"double®);
arg.10Type = "RTW_I0_OUTPUT";
Implementation.setReturn(hEnt, arg);

arg = getTflArgFromString(hEnt, "ul®,"double®);
Implementation.addArgument(hEnt, arg);

%arg = getTFlArgFromString(hEnt, “yl1®,"double*");
%arg.10Type = "RTW_10_OUTPUT";
%Implementation.addArgument(hEnt, arg);

addEntry(hLib, hEnt);
Create an rtwTargetlInfo file:

function rtwTargetinfo(tr)

% rtwTargetInfo function to register a code
% replacement library (CRL)

% for use with codegen

% Register the CRL defined in local function locCrlRegFcn
tr.registerTargetinfo(@locCriRegFcn);

end % End of RTWTARGETINFO

Create a locCrRegFcn file:

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry
thisCrl = RTW.TFIRegistry;

% Define the CRL properties

thisCrl_Name = "My calculate Example®;

thisCrl.Description = "Demonstration of function replacement”;
thisCrl.TableList = {"crl_table_calculate};

thisCrl.BaseTfl = "C89/C90 (ANSI)";

thisCrl.TargetHWDeviceType = {"*"};

end % End of LOCCRLREGFCN

1-89

1 Alphabetical List

1-90

Refresh registration information. At the MATLAB command line, enter:

RTW.TargetRegistry.getinstance("reset”);

Create a code generation configuration object.

cfg =coder.config("lib");

Specify the name of the code replacement library to use.

cfg.CodeReplacementLibrary="My calculate Example-®;

Generate code for top_function specifying that input in is double.

codegen -report -config cfg top_function -args {double(10)}

Because the data type of X and y is doublle, coder.replace searches for double
= calculate(double) in the Code Replacement Library. If it finds a match,
codegen generates the following code:

real_T top_function(real_T in)

{
real _T p;
p = replacement_calculate_impl(in);
return exp(p);

}
In the generated code, the replacement function replacement_calculate_impl

replaces the MATLAB function calculate.
“Replace MATLAB Functions with Custom Code Using coder.replace”
“Replace MATLAB Functions Specified in MATLAB Function Blocks”
“Define Code Replacement Mappings”
“What Is Code Replacement Customization?”
“What Is Code Replacement?”

Tips

coder.replace is a code generation function. It does not alter MATLAB code or
MEX function generation.

Do not use multiple coder . replace statements inside a function.

You cannot use coder .replace within conditional expressions and loops.

coder.replace

+ coder.replace does not support replacements that require data alignment.
* varargout is not supported.

* You cannot use coder.replace to replace MATLAB functions that have variable-
size inputs.

coder . replace requires an Embedded Coder” license.

+ coder.replace disregards saturation and rounding modes when looking up function
replacements in a code replacement library.

See Also

See Also

codegen

Topics

“Replace MATLAB Functions with Custom Code Using coder.replace”
“Replace MATLAB Functions Specified in MATLAB Function Blocks”
“Define Code Replacement Mappings”

“What Is Code Replacement Customization?”

“What Is Code Replacement?”

Introduced in R2012b

1-91

1 Alphabetical List

1-92

coder.storageClass

Assign storage class to global variable

Syntax

coder.storageClass(global _name, storage class)

Description

coder.storageClass(global _name, storage_class) assigns the storage class
storage_class to the global variable global _name.

Assign the storage class to a global variable in a function that declares the global
variable. You do not have to assign the storage class in more than one function.

You must have an Embedded Coder license to use coder .storageClass. Only
when you use an Embedded Coder project or configuration object for generation
of C/C++ libraries or executables does the code generation software recognize
coder.storageClass calls.

Examples

Export Global Variables

In the function addglobals_ex, assign the "ExportedGlobal * storage class to the
global variable myglobalone and the "ExportedDefine” storage class to the global
variable myglobaltwo.

function y = addglobals_ex(x)
% Define the global variables.

global myglobalone;
global myglobaltwo;

coder.storageClass

% Assign the storage classes.

coder .storageClass("myglobalone®, "ExportedGlobal *);
coder .storageClass("myglobaltwo®, "ExportedDefine®);
y = myglobalone + myglobaltwo + Xx;

end

Create a code configuration object for a library or executable.

cfg = coder.config("dll®, "ecoder”, true);

Generate code. This example uses the —globals argument to specify the types and
initial values of myglobalone and myglobal two. Alternatively, you can define global
variables in the MATLAB global workspace. To specify the type of the input argument X,
use the —args option.

codegen -config cfg -globals {"myglobalone®, 1, "myglobaltwo®, 2} -args {1} addglobals_ex -report
From the initial values of 1 and 2, codegen determines that myglobalone and
myglobaltwo have the type double. codegen defines and declares the exported

variables myglobalone and myglobaltwo. It generates code that initializes
myglobalone to 1.0 and myglobaltwo to 2.0.

To view the generated code for myglobaltwo and myglobalone, click the View report
link.

+ myglobaltwo is defined in the Exported data define section in
addglobals_ex.h.

/* Exported data define */
/* Definition for custom storage class: ExportedDefine */
#define myglobaltwo 2.0

+ myglobalone is defined in the Variable Definitions section in
addglobals_ex.c.

/* Variable Definitions */
/* Definition for custom storage class: ExportedGlobal */
double myglobalone;

+ myglobalone is declared as extern in the Variable Declarations section in
addglobals_ex.h.

/* Variable Declarations */

1-93

1 Alphabetical List

1-94

/* Declaration for custom storage class: ExportedGlobal */
extern double myglobalone;

+ myglobalone is initialized in addglobals_ex_initialize.c.
#include "rt_nonfinite_h"
#include "addglobals_ex.h"
#include "addglobals_ex_initialize_h"

/* Named Constants */
#define b_myglobalone (1.0)

/* Function Definitions */

/*

* Arguments : void

* Return Type : void

*/

void addglobals_ex_initialize(void)
{

rt_InitinfAndNaN(8U);
myglobalone = b_myglobalone;

}
Import Global Variable

In the function addglobal _im, assign the " ImportedExtern® storage class to the
global variable myglobal.

function y = addglobal_im(x)

% Define the global variable.

global myglobal;

% Assign the storage classes.

coder .storageClass("myglobal*, " ImportedExtern®);
y = myglobal + Xx;

end

Create a file c:\myfiles\myfile.c that defines and initializes the imported variable
myglobal.

#include <stdio.h>

coder.storageClass

/* Variable definitions for imported variables */
double myglobal = 1.0;

Create a code configuration object. Configure the code generation parameters to include
myfile.c. For output type "1ib", or if you generate source code only, you can generate
code without providing this file. Otherwise, you must provide this file.

cfg = coder.config("dll®", "ecoder”, true);

cfg.CustomSource = "myfile.c";
cfg.Custominclude = "c:\myfiles”;

Generate the code. This example uses the —globals argument to specify the type and
initial value of myglobal. Alternatively, you can define global variables in the MATLAB
global workspace. For imported global variables, the code generation software uses the
initial values to determine only the type.

codegen -config cfg -globals {"myglobal®, 1} -args {1} addglobal_im -report

From the initial value 1, codegen determines that myglobal has type double.
codegen declares the imported global variable myglobal. It does not define myglobal
or generate code that initializes myglobal. myfile.c provides the code that defines and
initializes myglobal.

To view the generated code for myglobal, click the View report link.

myglobal is declared as extern in the Variable Declarations section in
addglobal _im_data.h.

/* Variable Declarations */
/* Declaration for custom storage class: ImportedExtern */
extern double myglobal;

Import External Pointer

In the function addglobal _imptr, assign the " ImportedExternPointer” storage
class to the global variable myglobal.

function y = addglobal_imptr(x)
% Define the global variable.

global myglobal;

1-95

1 Alphabetical List

% Assign the storage classes.

coder .storageClass("myglobal®, "ImportedExternPointer®”);
y = myglobal + Xx;
end

Create a file c:\myfiles\myfile.c that defines and initializes the imported global
variable myglobal.

#include <stdio.h>

/* Variable definitions for imported variables */
double v = 1.0;
double *myglobal = &v;

Create a code configuration object. Configure the code generation parameters to include
myFfile.c. For output type” lib", or if you generate source code only, you can generate
code without providing this file. Otherwise, you must provide this file.

cfg = coder.config("dll®", "ecoder”, true);
cfg.CustomSource = "myfile.c”;
cfg.Custominclude = "c:\myfiles”;

Generate the code. This example uses the —~globals argument to specify the type
and initial value of the global variable myglobal. Alternatively, you can define global
variables in the MATLAB global workspace. For imported global variables, the code
generation software uses the initial values to determine only the type.

codegen -config cfg -globals {"myglobal®, 1} -args {1} addglobal_imptr -report

From the initial value 1, codegen determines that myglobal has type double.
codegen declares the imported global variable myglobal. It does not define myglobal
or generate code that initializes myglobal. myfile.c provides the code that defines and
initializes myglobal.

To view the generated code for myglobal, click the View report link.

myglobal is declared as extern in the Variable Declarations section in
addglobal_imptr_data.h.

/* Variable Declarations */
/* Declaration for custom storage class: ImportedExternPointer */

1-96

coder.storageClass

extern double *myglobal;

. “Control Declarations and Definitions of Global Variables in Code Generated from
MATLAB Code”
Input Arguments

global_name — Name of global variable
character vector

global_name is the name of a global variable, specified as a character vector.
global name must be a compile-time constant.

Example: "myglobal "
Data Types: char
storage_class — Name of storage class

"ExportedGlobal”® | "ExportedDefine” | " ImportedExtern® |
" ImportedExternPointer”

Storage class to assign to global_var. storage_class can have one of the following
values.

Storage Class Description

"ExportedGlobal* + Defines the variable in the Variable
Definitions section of the C file
entry point_name.c.

* Declares the variable as an extern
in the Variable Declarations
section of the header file
entry point _name.h

+ Initializes the variable in the function
entry point name_initialize._h.

"ExportedDefine* Declares the variable with a #define
directive in the Exported data
define section of the header file
entry point_name _h.

1-97

1 Alphabetical List

1-98

Storage Class

Description

" ImportedExtern*

Declares the variable as an extern in the
Variable Declarations section of the
header file entry_point_name_data.h.
The external code must supply the variable
definition.

" ImportedExternPointer”

Declares the variable as an

extern pointer in the Variable
Declarations section of the header
file entry point _name_data.h. The
external code must define a valid pointer
variable.

+ If you do not assign a storage class to a global variable, except for the declaration
location, the variable behaves like it has an "ExportedGlobal " storage class.
For an "ExportedGlobal " storage class, the global variable is declared in the file
entry_point_name .h. When the global variable does not have a storage class, the
variable is declared in the file entry_point_name_data.h.

Data Types: char

Limitations

+ After you assign a storage class to a global variable, you cannot assign a different

storage class to that global variable.

* You cannot assign a storage class to a constant global variable.

See Also

See Also

codegen

Topics

“Control Declarations and Definitions of Global Variables in Code Generated from

MATLAB Code”

coder.storageClass

“Storage Classes for Code Generation from MATLAB Code”

Introduced in R2015b

1-99

1 Alphabetical List

1-100

compare

Class: cgv.CGV
Package: cgv

Compare signal data

Syntax

[matchNames, matchFigures, mismatchNames, mismatchFigures]
cgv.CGV.compare(data_setl, data_set2)

[matchNames, matchFigures, mismatchNames, mismatchFigures]
cgv.CGV.compare(data_setl, data_set2, "Plot", param_value)
[matchNames, matchFigures, mismatchNames, mismatchFigures]
cgv.CGV.compare(data_setl, data_set2, "Plot", "none", "Signals”,
signal_list, "ToleranceFile®, file_name)

Description

[matchNames, matchFigures, mismatchNames, mismatchFigures] =
cgv.CGV.compare(data_setl, data_set2) compares data from two data sets
which have common signal names between both executions. Possible outputs of the
cgv.CGV.compare function are matched signal names, figure handles to the matched
signal names, mismatched signal names, and figure handles to the mismatched signal
names. By default, cgv.CGV.compare looks at the signals which have a common name
between both executions.

[matchNames, matchFigures, mismatchNames, mismatchFigures] =
cgv.CGV.compare(data_setl, data_set2, "Plot", param_value) compares the
signals and plots the signals according to param_value.

[matchNames, matchFigures, mismatchNames, mismatchFigures] =
cgv.CGV.compare(data_setl, data_set2, "Plot", "none", "Signals”,
signal_list, "ToleranceFile®, file_name) compares only the given signals and
does not produce plots.

compdadre

Input Arguments

data_setl, data set2

Output data from a model. After running the model, use the cgv.CGV.getOutputData
function to get the data. The cgv.CGV.getOutputData function returns a cell array of
the output signal names.

varargin

Variable number of parameter name and value pairs.

varargin Parameters

You can specify the following argument properties for the cgv.CGV.compare function
using parameter name and value argument pairs. These parameters are optional.

Plot(optional)

Designates which comparison data to plot. The value of this parameter must be one
of the following:

* "match”: plot the comparison of the matched signals from the two data sets

+ "mismatch” (default): plot the comparison of the mismatched signals from the
two datasets

* "none": do not produce a plot

Signals(optional)
A cell array of character vectors, where each vector is a signal name in the output
data. Use cgv.CGV.getSavedSignals to view the list of available signal names in
the output data. signal_list can contain an individual signal or multiple signals.
The syntax for an individual signal name is:

signal_list = {"log_data.subsystem name.Data(:,1)"}
The syntax for multiple signal names is:

signal_list = {"log_data.block_name._Data(:,1)",...
"log_data.block_name.Data(:,2)",.-.
"log_data.block_name.Data(:,3)",.-.
"log_data.block_name.Data(:,4)"};
If a model component contains a space or newline character, MATLAB adds
parentheses and a single quote to the name of the component. For example, if a

1-101

1 Alphabetical List

1-102

section of the signal has a space, "block name®, MATLAB displays the signal name
as:

log_data.("block name*®) ._Data(:,1)
To use the signal name as input to a CGV function, "block name® must have two
single quotes. For example:

signal_list = {"log_data.(""block name®"*") .Data(:,1)"}

If Signals is not present, the signals are compared.
Tolerancefi le(optional)

Name for the file created by the cgv.CGV.createToleranceFi le function. The file
contains the signal names and the associated tolerance parameter name and value
pair for comparing the data.

Output Arguments

Depending on the data and the parameters, the following output arguments might be
empty.

match_names

Cell array of matching signal names.
match_figures

Array of figure handles for matching signals
mismatch_names

Cell array of mismatching signal names
mismatch_figures

Array of figure handles for mismatching signals

See Also

Topics
“Verify Numerical Equivalence with CGV”

configModel

configModel

Class: cgv.Config
Package: cgv

Determine and change configuration parameter values

Syntax

cfgObj .configModel ()

Description

cfgobj .configModel () determines the recommended values for the configuration
parameters in the model. cfgObj is a handle to a cgv.Config object. The ReportOnly
property of the object determines whether configModel changes the configuration
parameter values.

See Also

Topics
“About Model Configurations” (Simulink)
“Programmatic Code Generation Verification”

1-103

1 Alphabetical List

1-104

checkEnvSetup

Configure the code generator to interact with Code Composer Studio

Syntax

checkEnvSetup(ide, boardproc, action)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3
* Texas Instruments Code Composer Studio v4

* Texas Instruments Code Composer Studio v5

Description

The checkEnvSetup function is only useful for validating the toolchain when the
System target file parameter is set to idelink_ert.tlcor idelink_grt.tlc. Do
not use checkEnvSetup when System target file is set to ert.tlc. The System target
file parameter is located on the Code Generation pane in the Configuration Parameters
dialog box. For more information, see “System target file” (Simulink Coder).

Before using the code generator with Texas Instruments Code Composer Studio IDE
for the first time, use the checkEnvSetup function to verify that you have the required
third-party tools, as described in:

* “Compare Version Numbers of Installed vs. Required Tools” on page 1-106

+ “Set the Environment Variables” on page 1-106.

Run checkEnvSetup again whenever you configure CCS IDE to interact with a new
board or processor, or upgrade the related third-party tools.

The syntax for this function is: checkEnvSetup(ide, boardproc, action):

checkEnvSetup

* For the ide argument, enter the IDE you want to check:

+ "ccs” checks the setup for Code Composer Studio v3
* "ccsv4” checks the setup for Code Composer Studio v4
"ccsvb ™ checks the setup for Code Composer Studio v5

+ For the boardproc argument, enter the name of a supported board or processor.
You can get these names from the Processor parameter on the Target Hardware
Resources tab (see related link at bottom of topic). For example, enter: "F2812".

+ For the action argument, specify the action you want this function to perform:

"list" lists the required third-party tools and version numbers.

+ "check" lists the required third-party tools and the ones on your development
system. If tools are missing, install them. If the version numbers do not match,
install the required version.

* "setup” creates environment variables that point to the installation folders of the
third-party tools. This action is required.

If your tools do not meet the requirements, the function advises you. If path information
1s incomplete, the function prompts you to enter path information for specific tools.

If you omit the action argument, the method defaults to "setup”.

Ifactionis "list” or "check”, the checkEnvSetup function returns an output
argument that contains the third-party tool information. You can assign that output
argument to a variable. When action is "setup”, the checkEnvSetup function does
not return an output argument.

Examples

Get Information About Required Tools

To find out which third-party tools your board requires, including version numbers, use
"list" as the third argument.

checkEnvSetup(“ccs™, "F2808 eZdsp®, "list™)

1. CCS (Code Composer Studio)

Required version: 3.3.82.13
Required for : Automation and Code Generation

1-105

1 Alphabetical List

2. CGT (Texas Instruments C2000 Code Generation Tools)
Required version: 5.2.1
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Required version: 5.33.05
Required for : Real-Time Data Exchange (RTDX)

4. Flash Tools (TMS320C2808 Flash APIs)
Required version: 3.02
Required for : Flash Programming
Required environment variables (name, value):
(FLASH_2808_API_INSTALLDIR, "<Flash Tools (TMS320C2808 Flash APIs) installation folder>")

Compare Version Numbers of Installed vs. Required Tools

To compare “Your version” of the installed third-party tools with the “Required version”,
use "check"” as the third argument.

To resolve differences between the two version numbers, install the required software
versions. Using versions of the software that are different from the required version can
produce unexpected results.

checkEnvSetup(“ccs™, "c6416", "check™)

1. CCS (Code Composer Studio)

Your version : 3.3.38.2
Required version: 3.3.82.13
Required for : Automation and Code Generation

2. CGT (Code Generation Tools)

Your version : 6.0.8
Required version: 6.1.10
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Your version
Required version: 5.33.05
Required for : Code generation

4. Texas Instruments IMGLIB (TMS320C64x)

Your version :1.04
Required version: 1.04
Required for : CRL block replacement

C64X_IMGLIB_INSTALLDIR = "E:\apps\Texaslnstruments\C6400\imglib_v104b*
Set the Environment Variables

After verifying that you have the required versions of the third-party tools, set the
environment variables. Use "setup” as the action argument, or omit the action
argument.

This step is required before the code generator can use Texas Instruments Code
Composer Studio to build and run an executable.

1-106

checkEnvSetup

checkEnvSetup(“ccs®, "dm6437evm*™)

1. Checking CCS (Code Composer Studio) version
Required version: 3.3.82.13

Required for
Your Version

Automation and Code Generation
3.3.38.13

2. Checking CGT (Code Generation Tools) version
Required version: 6.1.10
Required for - Code generation
Your Version : 6.1.10

3. Checking DSP/BIOS (Real Time Operating System) version

Required version: 5.33.05
Required for - Code generation
Your Version : 5.33.05

4. Checking Texas Instruments IMGLIB (C64x+) version
Required version: 2.0.1
Required for : CRL block replacement
Your Version :2.0.1
Setting environment variable "C64XP_IMGLIB_INSTALLDIR"
to "E:\apps\TexaslInstruments\C64Plus\imglib_v201"

5. Checking DM6437EVM DVSDK (Digital Video Software Developers Kit) version

Required version: 1.01.
Required for - Code
Your Version : 1.01.

Setting environment
Setting environment
Setting environment
Setting environment

See Also

00.15

generation

00.15

variable
variable
variable
variable

"'DVSDK_EVMDM6437_INSTALLDIR" to "C:\[...]"
“CSLR_DM6437_INSTALLDIR" to "C:\dvsd[...]

""PSP_EVMDM6437_INSTALLDIR" to "C:\dv[...]"
“NDK_INSTALL_DIR" to "C:\dvsdk_1_01_[...]"

“System target file” (Simulink Coder) | “Code Generation: Target Hardware Resources

Pane” on page 13-36

Topics

“Choose and Configure Build Process” (Simulink Coder)

Introduced in R2011a

1-107

1 Alphabetical List

1-108

close

Close project in IDE window

Syntax

close(IDE Obj,filename,"project™)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

Use close(IDE Obj,filename, "project®) to close a specific project, projects, or the
active open project.

For the filename argument:

* To close the project files, enter "alll ®.

+ To close a specific project, enter the project file name, such as "myProj . If the file is
not an open file in the IDE, MATLAB returns a warning message.

* To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if filename is "all” or
[D), replace "project®with "projectgroup”.

Note:

* The open method does not support the "text" argument.

close

+ Save changes to your files and projects in the IDE before you use close. The close
method does not save changes, nor does it prompt you to save changes, before it closes
the project.

Examples

To close the open project files:
close(IDE_Obj,"all™,"project™)

To close the open project, myProj:

close(IDE_Obj, "myProj~, "project”)

To close the active open project:

close(IDE_Obj,[1, project™)

With the VisualDSP++ IDE, to close the open project groups:
close(IDE_Obj,"all™, "projectgroup®)

With the Visual DSP++ IDE, to close the active project group:

close(IDE_Obj,[1, "projectgroup®)

See Also

add | open | save

Introduced in R2011a

1-109

1 Alphabetical List

1-110

coder.MATLABCodeTemplate class

Package: coder

Represent code generation template for MATLAB Coder

Description

Create a coder. MATLABCodeTemplate object from a code generation template (CGT)
file. You can use this file to customize the code generation output for MATLAB Coder™.,
If a CGT file is not provided, the coder. MATLABCodeTemplate object is created

from the default template file matlabroot/toolbox/coder/matlabcoder/templates/
matlabcoder_default_template.cgt.

Construction

newObj = coder .MATLABCodeTemplate() creates a coder .MATLABCodeTemplate
object from the default code generation template (CGT) file matlabroot/toolbox/coder/
matlabcoder/templates/matlabcoder_default_template.cgt.

newObj = coder _MATLABCodeTemplate(CGTFile) creates a
coder .MATLABCodeTemplate object from the code generation template file CGTFile. If
the file is not on the MATLAB path, specify a full path to the file.

Input Arguments
CGTFile

Name of code generation template file

Methods

emitSection Emit comments for template section
getCurrentTokens Get current tokens
getTokenValue Get value of token

coder. MATLABCodeTemplate class

setTokenValue Set value of token for code generation
template

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB) in the MATLAB documentation.

Examples
newObj = coder_MATLABCodeTemplate()
newObj =

MATLABCodeTemplate with properties:

CGTFile: "matlabcoder_default_template.cgt”

newObj = coder.MATLABCodeTemplate("custom_matlabcoder_template.cgt™)

newObj =
MATLABCodeTemplate with properties:

CGTFile: “custom_matlabcoder_template.cgt”

See Also

See Also

coder MATLABCodeTemplate.setTokenValue |
coder. MATLABCodeTemplate.getTokenValue |
coder. MATLABCodeTemplate.getCurrentTokens |
coder MATLABCodeTemplate.emitSection

Topics
“Generate Custom File and Function Banners for C/C++ Code”
“Code Generation Template Files for MATLAB Code”

1-111

1 Alphabetical List

1-112

configure

Define size and number of RTDX channel buffers

Syntax

configure(rx,length,num)

Note: configure produces a warning on C5000™ processors and will be removed from a
future version of the software.

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

configure(rx,length,num) sets the size of each main (host) buffer, and the number
of buffers associated with rx. Input argument 1ength is the size in bytes of each channel
buffer and num is the number of channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined by the largest
message. On 16-bit processors, the main buffer must be 4 bytes larger than the largest
message. On 32-bit processors, set the buffer to be 8 bytes larger that the largest
message. By default, configure creates four, 1024-byte buffers. Independent of the
value of num, the IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

configure

Examples

Create a default link to CCS and configure six main buffers of 4096 bytes each for the

link.
IDE_Obj = ticcs

TICCS Object:
AP1 version
Processor type
Processor name
Running?

Board number

Processor number :
: 10.00 secs

Default timeout
RTDX channels
rx = rtdx(IDE_Obj)

RTDX channels

configure(rx,4096,6)

% Create the CCS link with default values.

1.0
: C67
: CPU
- No
-0

0

-0

% Create an alias to the rtdx portion.

% Use the alias rx to configure the length
% and number of buffers.

After you configure the buffers, use the RTDX™ tools in the IDE to verify the buffers.

See Also

readmat | readmsg | write | writemsg

Introduced in R2011a

1-113

1 Alphabetical List

1-114

connect

Connect IDE to processor

Syntax

IDE Obj.connect()
IDE Obj.connect(debugconnection)
IDE Obj.connect(...,timeout)

IDEs

This function supports the following IDEs:

* QGreen Hills®* MULTI®

Description

IDE 0Obj .connect() connects the IDE to the processor hardware or simulator.
IDE_Obj is the IDE handle.

IDE Obj.connect(debugconnection) connects the IDE to the processor using the
debug connection you specify in debugconnection. Enter debugconnection as a
character vector enclosed in single quotation marks. IDE_Obj is the IDE handle. Refer to
Examples to see this syntax in use.

IDE Obj.connect(...,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified connection process to complete. If
the time-out period expires before the process returns a completion message, MATLAB
generates an error and returns. Usually the program connection process works in spite of
the error message

Examples

The input argument character vectordebugconnection specify the processor to connect
to with the IDE. This example connects to the Freescale™ MPC5554 simulator. The

connect

debugconnection character vector is simppc -fast -dec -rom_use_entry -
cpu=ppc5554.

IDE_Obj .connect("simppc -fast -dec -rom_use_entry -cpu=ppc5554*7)

See Also

load | run

Introduced in R2011a

1-115

1 Alphabetical List

1-116

copySetup

Class: cgv.CGV
Package: cgv

Create copy of cgv.CGV object

Syntax

cgvObj2 = cgvObjl.copySetup()

Description

cgvObj2 = cgvObjl.copySetup() creates a copy of a cgv.CGV object, cgvObj1.
The copied object, cgvObj2, has the same configuration as cgvObj 1, but does not copy
results of the execution.

Examples

Make a copy of a cgv.CGV object, set it to run in a different mode, then run and compare
the objects in a cgv.Batch object.

cgvModel = "rtwdemo_cgv”;

cgvObjl = cgv.CGV(cgvModel, "connectivity™, "sim");
cgvOobjl.run(Q;

cgvObj2 = cgvObjl.copySetup()
cgvObj2.setMode("sil™);

cgvObj2.run(Q;

Tips
* You can use this method to make a copy of a cgv.CGV object and then modify the
object to run in a different mode by calling cgv.CGV.setMode.

+ If you have a cgv.CGV object, which reported errors or failed at execution, you can
use this method to copy the object and rerun it. The copied object has the same

copySetup

configuration as the original object, therefore you might want to modify the location of
the output files by calling cgv.CGV.setOutputDir. Otherwise, during execution, the
copied cgv.CGV object overwrites the output files.

See Also

cgv.CGV.run

Topics
“Verify Numerical Equivalence with CGV”

1-117

1 Alphabetical List

1-118

copyConceptualArgsTolmplementation

Copy conceptual argument specifications to matching implementation arguments for code
replacement table entry

Syntax

copyConceptualArgsTolmplementation(hEntry)

Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW.TFICFunctionEntry or
heEntry = RTW._TFICOperationEntry.

Description

The copyConceptualArgsTolmplementation function provides a quick way to
perform a shallow copy of conceptual arguments to matching implementation arguments.
The conceptual arguments and implementation arguments refer to the same argument
instance. If you update an implementation argument, the corresponding conceptual
argument is also updated.

Use this function when the conceptual arguments and the implementation arguments
are the same for a code replacement table entry.

For arguments with an unsized type, such as integer, the code generator determines
the size of the argument values based on hardware implementation configuration
settings of the MATLAB code or model.

Examples

In the following example, the copyConceptualArgsTolmplementation function is
used to copy conceptual argument specifications to matching implementation arguments
for an addition operation.

copyConceptual ArgsTolmplementation

hLib = RTW.TfITable;

% Create an entry for addition of built-in uint8 data type

op_entry = RTW.TFfICOperationEntry;
op_entry.setTflCOperationEntryParameters(...
“Key®,
"Priority”,
"SaturationMode”,
"RoundingModes”,
" ImplementationName”,

"ImplementationHeaderFile",
" ImplementationSourceFile”,

arg = hLib.getTflArgFromString("yl","uint87);
arg.10Type = "RTW_I0_OUTPUT";
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“ul®,"uint87);
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString(“u2®,"uint87);
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsTolmplementation();

hLib.addEntry(op_entry);

See Also

Topics
“Define Code Replacement Mappings”

*RTW_OP_ADD",
90,

"u8_add_u8 u8", .
"u8_add_u8 u8.h", .
"u8_add_u8 u8.c");

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

*RTW_SATURATE_ON_OVERFLOW", ...
{"RTW_ROUND_UNSPECIFIED"}, ...

1-119

1 Alphabetical List

1-120

createAndAddConceptualArg

Create conceptual argument from specified properties and add to conceptual arguments
for code replacement table entry

Syntax

arg = createAndAddConceptualArg(hEntry, argType, varargin)

Input Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement table entry class, such as hEntry = RTW.TFICFunctionEntry or
hEntry = RTW.TFfICOperationEntry.

argType
Character vector specifying the argument type to create: "RTW.TFIArgNumeric” for
numeric or "RTW._TFIArgMatrix” for matrix.

varargin

Parameter/value pairs for the conceptual argument. See varargin Parameters.

varargin Parameters

The following argument properties can be specified to the
createAndAddConceptualArg function using parameter/value argument pairs. For
example,

createAndAddConceptualArg(..., "DataTypeMode®, "double™, ...);

Name
Character vector specifying the argument name, for example, "y1" or "ul”.
10Type

Character vector specifying the I/0 type of the argument: *RTW_10_INPUT" for input
or "RTW_I10_OUTPUT" for output. The default is "RTW_10_INPUT".

createAndAddConceptualArg

IsSigned

Boolean value that, when set to true, indicates that the argument is signed. The
default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The default is 16.
CheckSlope

Boolean flag that, when set to true for a fixed-point argument, causes code
replacement request processing to check that the slope value of the argument exactly
matches the call-site slope value. The default is true.

Specify true if you are matching a specific [slope bias] scaling combination or a
specific binary-point-only scaling combination on fixed-point operator inputs and
output. Specify false if you are matching relative scaling or relative slope and bias
values across fixed-point operator inputs and output.

CheckBias

Boolean flag that, when set to true for a fixed-point argument, causes code
replacement request processing to check that the bias value of the argument exactly
matches the call-site bias value. The default is true.

Specify true if you are matching a specific [slope bias] scaling combination or a
specific binary-point-only scaling combination on fixed-point operator inputs and
output. Specify False if you are matching relative scaling or relative slope and bias
values across fixed-point operator inputs and output.

DataTypeMode
Character vector specifying the data type mode of the argument: "boolean”,
"double®, "single”, "Fixed-point: binary point scaling”, or "Fixed-
point: slope and bias scaling”. The default is "Fixed-point: binary
point scaling”.

Note: You can specify either DataType (with Scal ing) or DataTypeMode, but do
not specify both.

DataType

Character vector specifying the data type of the argument: "boolean”, "double”,
"single”, or "Fixed". The default is "Fixed".

1-121

1 Alphabetical List

1-122

Scaling

Character vector specifying the data type scaling of the argument: "BinaryPoint
for binary-point scaling or "SlopeBias” for slope and bias scaling. The default is
"BinaryPoint”.

Slope
Floating-point value specifying the slope of the argument, for example, 15.0. The
default is 1.

If you are matching a specific [slope bias] scaling combination on fixed-point
operator inputs and output, specify either this parameter or a combination of the
SlopeAdjustmentFactor and FixedExponent parameters

SlopeAdjustmentFactor

Floating-point value specifying the slope adjustment factor (F) part of the slope, F2E,
of the argument. The default is 1.0.

If you are matching a specific [slope bias] scaling combination on fixed-point operator

inputs and output, specify either the Slope parameter or a combination of this
parameter and the FixedExponent parameter.

FixedExponent

Integer value specifying the fixed exponent (E) part of the slope, FZE, of the argument.

The default is -15.

If you are matching a specific [slope bias] scaling combination on fixed-point operator

inputs and output, specify either the Slope parameter or a combination of this
parameter and the SlopeAdjustmentFactor parameter.

Bias
Floating-point value specifying the bias of the argument, for example, 2.0. The
default is 0.0.

Specify this parameter if you are matching a specific [slope bias] scaling combination

on fixed-point operator inputs and output.
FractionLength

Integer value specifying the fraction length for the argument, for example, 3. The
default is 15.

Specify this parameter if you are matching a specific binary-point-only scaling
combination on fixed-point operator inputs and output.

createAndAddConceptualArg

BaseType

Character vector specifying the base data type for which a matrix argument is valid,
for example, "double”.

DimRange

Dimensions for which a matrix argument is valid, for example, [2 2]. You can also
specify a range of dimensions specified in the format [DimlMin Dim2Min ...
DimNMin; DimlMax Dim2Max ... DimNMax]. For example, [2 2; inf inf]
means a two-dimensional matrix of size 2x2 or larger.

Output Arguments

Handle to the created conceptual argument. Specifying the return argument in the
createAndAddConceptualArg function call is optional.

Description
The createAndAddConceptual Arg function creates a conceptual argument from

specified properties and adds the argument to the conceptual arguments for a code
replacement table entry.

Examples

In the following example, thecreateAndAddConceptualArg function is used to specify
conceptual output and input arguments for a code replacement operator entry.

op_entry = RTW.TFICOperationEntry;

createAndAddConceptualArg(op_entry, "RTW.TfIArgNumeric™, ...

“Name*~, ylT, ...
"10Type~, "RTW_IO_OUTPUT", ...
"IsSigned”, true, ...

"WordLength®", 32, ...
"FractionLength®, 0);

createAndAddConceptualArg(op_entry, "RTW.TfIArgNumeric”®, ...

“Name*~, ul®, ...
"10Type~, “"RTW_IO_INPUT", . ..
"IsSigned”, true, ...

1-123

1 Alphabetical List

"WordLength®, 32,
"FractionLength®, 0);

createAndAddConceptualArg(op_entry, "RTW.TfIArgNumeric”®, ...

“Name*~, Tu2T, ...
"10Type~, "RTW_IO_INPUT", ...
"IsSigned”, true, ...

"WordLength®", 32,
"FractionLength®, 0);

The following examples show some common type specifications using
createAndAddConceptualArg.

% uint8:

createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...
“Name*®, ul", ...
“10Type~, “"RTW_IO_INPUT", ...
"IsSigned”, false,
"WordLength™, 8, ...
"FractionLength®, 0);

% single:

createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...
“Name*®, ult, ...
“10Type~, “"RTW_IO_INPUT", ...
"DataTypeMode®™, "single”);

% double:

createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...
“Name*®, “ylT, ...
“10Type~, “RTW_I0_OUTPUT™, ...
"DataTypeMode®™, “double®);

% boolean:

createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...
“Name*®, ult, ...
“10Type~, “RTW_IO_INPUT", ...

"DataTypeMode®™, “boolean”);

% Fixed-point using binary-point-only scaling:
createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...

“Name™, yl®, ...

"10Type~, "RTW_IO_OUTPUT", ...

"CheckSlope”, true, ...

"CheckBias", true, ...

"DataTypeMode”, "Fixed-point: binary point scaling®, ...
"1sSigned”, true, ...

"WordLength", 32, ...

"FractionLength”™, 28);

% Fixed-point using [slope bias] scaling:
createAndAddConceptualArg(hEntry, "RTW.TfIArgNumeric™, ...

“Name™, yl®, ...
"10Type~, "RTW_IO_OUTPUT", ...
"CheckSlope”, true, ...

1-124

createAndAddConceptualArg

"CheckBias", true, ...

"DataTypeMode”, "Fixed-point: slope and bias scaling®, ...
"1sSigned”, true, ...

"WordLength", 16, ...

“Slope”, 15, ...

"Bias", 2);

For examples of fixed-point arguments that use relative scaling or relative slope/bias
values, see “Net Slope Scaling Code Replacement” and “Equal Slope and Zero Net Bias
Code Replacement”.

See Also

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

1-125

1 Alphabetical List

1-126

createAndAddimplementationArg

Create implementation argument from specified properties and add to implementation
arguments for code replacement table entry

Syntax

arg = createAndAddImplementationArg(hEntry, argType,
varargin)

Input Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement entry class, such as hEntry = RTW.TFICFunctionEntry or hEntry
= RTW.TFICOperationEntry.

argType
Character vector specifying the argument type to create: "RTW.TFIArgNumeric” for
numeric.

varargin

Parameter/value pairs for the implementation argument. See varargin Parameters.

varargin Parameters

The following argument properties can be specified to the
createAndAddImplementationArg function using parameter/value argument pairs.
For example,

createAndAddImplementationArg(..., "DataTypeMode®, “"double®, ...);

Name
Character vector specifying the argument name, for example, "ul”.
10Type

Character vector specifying the I/O type of the argument: *RTW_10_INPUT" for
input.

createAndAddimplementationArg

IsSigned

Boolean value that, when set to true, indicates that the argument is signed. The
default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The default is 16.
DataTypeMode

Character vector specifying the data type mode of the argument: "boolean”,
"double®, "single”, "Fixed-point: binary point scaling”, or "Fixed-
point: slope and bias scaling”. The defaultis "Fixed-point: binary
point scaling”.

Note: You can specify either DataType (with Scal ing) or DataTypeMode, but do
not specify both.

DataType
Character vector specifying the data type of the argument: "boolean”, "double”,
"single®, or "Fixed". The default is "Fixed".

Scaling

Character vector specifying the data type scaling of the argument: "BinaryPoint”
for binary-point scaling or "SlopeBias” for slope and bias scaling. The default is
"BinaryPoint”.

Slope

Floating-point value specifying the slope of the argument, for example, 15.0. The
default is 1.

You can optionally specify either this parameter or a combination of the
SlopeAdjustmentFactor and FixedExponent parameters, but do not specify
both.

SlopeAdjustmentFactor

Floating-point value specifying the slope adjustment factor (F) part of the slope, F2E,
of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a combination of this
parameter and the FixedExponent parameter, but do not specify both.

1-127

1 Alphabetical List

1-128

FixedExponent

Integer value specifying the fixed exponent (E) part of the slope, F2E, of the argument.
The default is -15.

You can optionally specify either the Slope parameter or a combination of this
parameter and the SlopeAdjustmentFactor parameter, but do not specify both.
Bias
Floating-point value specifying the bias of the argument, for example, 2.0. The
default is 0.0.
FractionLength

Integer value specifying the fraction length of the argument, for example, 3. The
default is 15.

Value
Constant value specifying the initial value of the argument. The default is 0.

Use this parameter only to set the value of injected constant input arguments, such
as arguments that pass fraction-length values or flag values, in an implementation
function signature. Do not use it for standard generated input arguments such as ul,
u2, and so on. You can supply a constant input argument that uses this parameter
anywhere in the implementation function signature, except as the return argument.

You can inject constant input arguments into the implementation signature for code
replacement table entries, but if the argument values or the number of arguments
required depends on compile-time information, you should use custom matching. For
more information, see “Customize Match and Replacement Process”.

Output Arguments

Handle to the created implementation argument. Specifying the return argument in the
createAndAddImplementationArg function call is optional.

Description

The createAndAddImplementationArg function creates an implementation argument
from specified properties and adds the argument to the implementation arguments for a
code replacement table entry.

createAndAddimplementationArg

Implementation arguments must describe fundamental numeric data types, such
as double, single, int32, intl6, Iint8, uint32, uintl6, uint8, boolean, or
"logical " (not fixed-point data types).

Examples
In the following example, thecreateAndAdd ImplementationArg function is used along

with the createAndSetCImplementationReturn function to specify the output and
input arguments for an operator implementation.

op_entry = RTW.TFICOperationEntry;

createAndSetClmplementationReturn(op_entry, “RTW.TFfIArgNumeric®,

“Name*, "yl®, ...
“10Type*, “"RTW_10_OUTPUT",
"1sSigned”, true, ...

“WordLength®, 32, -
“FractionLength®, 0);

createAndAddImplementationArg(op_entry, “RTW.TFIArgNumeric™,...
“Name*®, “ul®, .
"10Type*, "RTW_I0_INPUT", ...
"1sSigned”, true, ...
“"WordLength®, 32, .
"FractionLength®, 0);

createAndAddImplementationArg(op_entry, “RTW.TFIArgNumeric™,...
"Name*, “u2®, B
"10Type*, "RTW_I0_INPUT", ...
"1sSigned”, true, ...
“"WordLength®, 32, .
"FractionLength®, 0);

The following examples show some common type specifications using
createAndAddImplementationArg.

% uint8:

createAndAddImplementationArg(hEntry, "RTW.TfIArgNumeric®, ...
“Name*™, “ult, ...
"10Type~, "RTW_IO_INPUT",
"1sSigned”, false, ...
"WordLength™, 8, ...
"FractionLength®™, 0);

% single:

createAndAddImplementationArg(hEntry, "RTW.TfIArgNumeric®, ...
“Name*™, “ult, ...
"10Type~, "RTW_IO_INPUT",

1-129

1 Alphabetical List

"DataTypeMode®, "single”);

% double:

createAndAddImplementationArg(hEntry, "RTW.TflArgNumeric®, ...
“Name*™, “ul®, ...
"10Type~, "RTW_IO_INPUT",

"DataTypeMode®, "double”™);

% boolean:

createAndAddImplementationArg(hEntry, "RTW.TflArgNumeric®, ...
“Name*™, “ul®, ...
"10Type~, "RTW_IO_INPUT",
"DataTypeMode®, "boolean”™);

See Also

createAndSetCImplementationReturn

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

1-130

createAndSetClmplementationReturn

createAndSetCimplementationReturn

Create implementation return argument from specified properties and add to
implementation for code replacement table entry

Syntax

arg = createAndSetClmplementationReturn(hEntry, argType,
varargin)

Input Arguments

hEntry

Handle to a code replacement table entry previously returned by instantiating a code
replacement entry class, such as hEntry = RTW.TFICFunctionEntry or hEntry
= RTW.TFICOperationEntry.

argType
Character vector specifying the argument type to create: "RTW.TFIArgNumeric” for
numeric.

varargin

Parameter/value pairs for the implementation return argument. See varargin
Parameters.

varargin Parameters

The following argument properties can be specified to the
createAndSetCImplementationReturn function using parameter/value argument
pairs. For example,

createAndSetCImplementationReturn(..., "DataTypeMode®, “double®, ...);

Name
Character vector specifying the argument name, for example, "y1°".
10Type

Character vector specifying the I/0 type of the argument: "RTW_10_OUTPUT" for
output.

1-131

1 Alphabetical List

1-132

IsSigned

Boolean value that, when set to true, indicates that the argument is signed. The
default is true.

WordLength

Integer specifying the word length, in bits, of the argument. The default is 16.

DataTypeMode

Character vector specifying the data type mode of the argument: "boolean”,
"double®, "single”, "Fixed-point: binary point scaling”, or "Fixed-
point: slope and bias scaling”. The defaultis "Fixed-point: binary
point scaling”.

Note: You can specify either DataType (with Scal ing) or DataTypeMode, but do
not specify both.

DataType

Character vector specifying the data type of the argument: "boolean”, "double”,
"single”, or "Fixed". The default is "Fixed".

Scaling

Character vector specifying the data type scaling of the argument: "BinaryPoint
for binary-point scaling or "SlopeBias” for slope and bias scaling. The default is
"BinaryPoint”.

Slope

Floating-point value specifying the slope for a fixed-point argument, for example,
15.0. The default is 1.

You can optionally specify either this parameter or a combination of the
SlopeAdjustmentFactor and FixedExponent parameters, but do not specify
both.

SlopeAdjustmentFactor

Floating-point value specifying the slope adjustment factor (F) part of the slope, FZE,
of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a combination of this
parameter and the FixedExponent parameter, but do not specify both.

FixedExponent

createAndSetClmplementationReturn

Integer value specifying the fixed exponent (E) part of the slope, FZE, of the argument.
The default is -15.

You can optionally specify either the Slope parameter or a combination of this
parameter and the SlopeAdjustmentFactor parameter, but do not specify both.
Bias

Floating-point value specifying the bias of the argument, for example, 2.0. The
default is 0.0.

FractionLength

Integer value specifying the fraction length of the argument, for example, 3. The
default is 15.

Output Arguments

Handle to the created implementation return argument. Specifying the return argument
in the createAndSetCImplementationReturn function call is optional.

Description

The createAndSetCImplementationReturn function creates an implementation
return argument from specified properties and adds the argument to the implementation
for a code replacement table.

Implementation return arguments must describe fundamental numeric data types, such
as double, single, int32, intl6, Iint8, uint32, uintl6, uint8, or boolean (not
fixed-point data types).

Examples

In the following example, the createAndSetCImplementationReturn function is used
along with the createAndAddImplementationArg function to specify the output and
input arguments for an operator implementation.

op_entry = RTW.TFICOperationEntry;

1-133

1 Alphabetical List

1-134

createAndSetCImplementationReturn(op_entry, "RTW.TFflIArgNumeric”,

“Name*™, yl®, ...
"10Type~, "RTW_I10_OUTPUT",
"1sSigned”, true, ...

"WordLength™, 32,
"FractionLength®, 0);

createAndAddImplementationArg(op_entry, "RTW.TflIArgNumeric®, ...
“Name*™, ul", ...
"10Type~, “RTW_IO_INPUT", ...
"1sSigned”, true, ...
"WordLength®, 32,
"FractionLength®™, 0);

createAndAddImplementationArg(op_entry, "RTW.TflIArgNumeric®, ...
“Name*™, u2t, ...
"10Type~, “RTW_IO_INPUT", ...
"1sSigned”, true, ...
"WordLength®, 32,
"FractionLength®™, 0);

The following examples show some common type specifications using
createAndSetCImplementationReturn

% uint8:

createAndSetClImplementationReturn(hEntry, "RTW.TFflIArgNumeric”®,
"Name*®, “yl®, ...
"10Type”, "RTW_I0_OUTPUT",
"1sSigned”, false, ...
"WordLength*, 8, ...
"FractionLength®™, 0);

% single:

createAndSetClImplementationReturn(hEntry, "RTW.TflArgNumeric”®,
"Name*®, “yl®, ...
"10Type~, "RTW_I10_OUTPUT",
"DataTypeMode®, "single”™);

% double:

createAndSetClImplementationReturn(hEntry, "RTW.TflArgNumeric”®,
"Name*®, yl®, ...
"10Type~, "RTW_I10_OUTPUT",
"DataTypeMode®, "double”™);

% boolean:

createAndSetClImplementationReturn(hEntry, "RTW.TflArgNumeric”®,
"Name*®, yl®, ...
"10Type~, "RTW_I10_OUTPUT",

"DataTypeMode®, "boolean”™);

See Also

createAndAddImplementationArg

createAndSetClmplementationReturn

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

1-135

1 Alphabetical List

createCRLEntry

Create code replacement table entry from conceptual and implementation argument
string specifications

Syntax

tableEntry = createCRLEntry(crTable,conceptualSpecification,
implementationSpecification)

Description

tableEntry = createCRLEntry(crTable,conceptualSpecification,
implementationSpecification) returns a code replacement table entry. The
entry maps a conceptual representation of a function or operator to an implementation
representation. The conceptualSpecification argument is a character vector that
defines the name and conceptual arguments, familiar to the code generator, for the
function or operator to replace. The implementationSpecification argument is a
character vector that defines the name and C/C++ implementation arguments for the
replacement function.

This function does not support:

+ C++implementations
+ Data alignment
* Operator replacement with net slope arguments

+ Entry parameter specifications (for example, priority, algorithm, building
information)

* Semaphore and mutex function replacements
In the syntax specifications, place a space before and after an operator symbol. For

example, use double ul + double u2instead of double ul+double u2. Also,
asterisk (¥), tilde (~), and semicolon (;) have the following meaning.

1-136

createCRLEntry

Symbol

Meaning

* Following a supported data type, such as int32*, pass by reference
(pointer). If the conceptual arguments are not scalar, in the
implementation specification, pass them by reference.

+ As part of a fixed-point data type definition, such as fixdt(1,32,*),

wildcard.

Based on the position of the fsymbol, slopes or bias must be the same across

data types.

Separates dimension ranges. For example, [1 10; 1 100] specifies a vector

with length from 10 through 100.

The following table shows syntax for the conceptual and implementation specifications

based on:

* Whether you are creating an entry for a function or operator.

* The type or characterization of the code replacement.

Type of Replacement |Conceptual Syntax

‘Implementation Syntax

Function Code Replacement Syntax

Typical

double y1

sin(double ul)

double yl1 = mySin(double ul)

Derive
implementation
argument data
types from
conceptual
specification

double yl

sin(double ul)

y1l = mySin(ul)

Derive
implementation
arguments

and data types
from conceptual
specification

double yl1

sin(double ul)

mySin

Change data type

single yl1

sin(single ul)

double yl1 = mySin(double ul)

Reorder arguments

double yl1
double u2)

atan2(double ul,

yl = myAtan(u2, ul)

1-137

1 Alphabetical List

Type of Replacement

Conceptual Syntax

Implementation Syntax

Specify column
vector arguments

double yl = sin(double
ul[10D)

double yl1 = mySin(double* ul)

Specify column
vector arguments
and dimension
range

double yl1[1 100; 1 100] =
sin(double ul[1l 100; 1 100])

mySin(double* ul, double* yl)

Remap return
value as output
argument

double yl1 = sin(double ul)

mySin(double ul, double* yl)

Specify fixed-point
data types

fixdt(1,16,3) yl =
sin(fixdt(1,16,3) ul)

intl6é yl mySin(intl6

Specify fixed-point
data types and set
CheckSlope to
false, CheckBias
to true, and Bias
to 0

fixdt(1,16,*) yl =
sin(fixdt(1,16,*) ul)

intl6é yl mySin(intl6

Specify fixed-point
data types and set
SlopesMustBeThe§
to true,
CheckSlope to
false, CheckBias
to true, and Bias
to 0

fixdt(1,16,~) yl =
sin(fixdt(1,16,~) ul)

intlé yl mySin(intlé

Specify fixed-point
data types and set
SlopesMustBeThe§
to true,
BiasMustBeTheSan
to true,
CheckSlope

to False, and
CheckBias to
false

fixdt(1,16,~,~) yl =
sin(fixdt(1,16,~,~) ul)

mySin(intl6é ul)

intlé yl

1-138

createCRLEntry

Type of Replacement

Conceptual Syntax

Implementation Syntax

Specify multiple
output arguments

[double yl double y2] =
foo(double ul, double u2)

double yl1 = myFoo(double ul,
double u2, double* y2)

Operator Code Replacement Syntax

Typical intlé yl = intl6 ul + intl6 intlé yl = myAdd(intl6é ul,
u2 intlé u2)
Specify fixed-point |Fixdt(1,16,3) yl = intlé yl = myAdd(intl6 ul,
data types fixdt(1,16,3) ul + intlé u2)
fixdt(1,16,3) u2
Specify fixed-point |Fixdt(1,16,*) yl = intlé yl = myAdd(intl6 ul,
data types and set |Fixdt(1,16,*) ul + intlé u2)
CheckSlope to fixdt(1,16,*) u2
false, CheckBias
to true, and Bias
to 0
Specify fixed- fixdt(1,16,~,0) yl = intlé yl = myAdd(intl6 ul,
point data types, fixdt(1,16,~,0) ul + intle u2)
wildcard, slopes fixdt(1,16,~,0) u2
must be the same,
and zero bias
Typecast intlé yl = int8 ul intlé yl = myCast(int8 ul)
Shift intlé yl = intl6 ul << intl6 |[intl6 yl = myShiftLeft(intl6
u2 ul, intlé u2)
intlé yl = intl6 ul >> intl6é |[Intl6 yl =
u2 myShiftRightArithmetic(intl6
intlé yl = intl6 ul .>> intl6|ul, Iintl6 u2)
u2 intle yl =
myShiftRightLogical (intl6 ul,
intlé u2)
Specify relational |bool yl = intl6 ul < intl6 u2|bool yl = mylLessThan(int6 ul,
operator intlé u2)
Specify int32 yl = int32 ul * in32 int32 yl = myMultDiv(int32
multiplication and |[u2 / In32 u3 ul, int32 u2, Iint32 ul)

division

1-139

1 Alphabetical List

Type of Replacement

Conceptual Syntax

Implementation Syntax

Specify matrix
multiplication

double y1[10][10] = double
ul[10][10] * double u2[10]
[10]

myMult(double* ul, double*
u2, double* yl1)

Specify element-
wise matrix
multiplication

double y1[10][10] = double
ul[10][10] .* double u2[10]

[10]

myMult(double* ul, double*
u2, double* yl)

Specify matrix
multiplication with
transpose of an
input argument

double y1[10][10] = double
ul[10][10] -"* double u2[10]
[10]

myMult(double* ul, double*
u2, double* yl)

Specify matrix
multiplication with
Hermitian of an
input argument

cdouble y1[10][10] = cdouble
ul[10][10]" * cdouble u2[10]
[10]

cdouble y1[10][10] = cdouble
ul[10][10] * cdouble u2[10]

[10]"

myMult(cdouble* ul, cdouble*
u2, cdouble* y1)

Specify left matrix
division

double y1[10][10] = double
ul[10][10] \ double u2[10]

[10]

myLeftDiv(double* ul, double*
u2, double* yl)

Specify right
matrix division

double y1[10][10] = double
ul[10][10] 7/ double u2[10]

[10]

myRightDiv(double* ul,
double* u2, double* yl1)

Examples

Replacement Entry for a Function

Create a table definition file that contains a function definition.

function crTable = crl_table_sinfcn()

Within the function body, create the code replacement table.

crTable = RTW.TFfITable;

Create a table entry for the sin function.

1-140

createCRLEntry

tableEntry = createCRLEntry(crTable,
"double yl = sin(double ul)*", ...
"double yl1 = mySin(double ul)*®);

Set entry parameters for the sin function. To generate the replacement code, specify that
the code generator use the header and source files mySin.h and mySin.c.

setTfICFunctionEntryParameters(tableEntry,
"ImplementationHeaderFile®, "mySin.h",
"ImplementationSourceFile", "mySin.c");

Add the entry to the table.

addEntry(crTable, tableEntry);

Replacement Entry for an Operator

Create a table definition file that contains a function definition.
function crTable = crl_table_addfcn()

Within the function body, create the code replacement table.
crTable = RTW.TFfITable;

Create a table entry for the addition operator.

tableEntry = createCRLEntry(crTable,
"intl6 yl intlé ul + Intl6é u2-,
"intl6 yl myAdd(intl6 ul, intl6 u2)");

Set entry parameters such that the entry specifies a cast-after-sum addition. To generate
the replacement code, specify that the code generator use the header and source files
myAdd . h and myAdd.c.

setTfICOperationEntryParameters(tableEntry,
"EntrylInfoAlgorithm®, "RTW_CAST_AFTER_OP",
"ImplementationHeaderFile", "myAdd.h",
"ImplementationSourceFile”, "myAdd.c"));

Add the entry to the table.

addEntry(crTable, tableEntry);
Replacement Entry for Fixed-Point Operator With Same Slope Across Types

Create a table definition file that contains a function definition.

1-141

1 Alphabetical List

1-142

function crTable = crl_table_intaddfcn()

Within the function body, create the code replacement table.

crTable = RTW.TflTable;

Create a table entry for a signed fixed-point addition operation requiring the same slope
across types.

tableEntry = createCRLEntry(crTable,
"fixdt(1,16,~,0) y1 = fixdt(1,16,~,0) ul + fixdt(1,16,~,0) u2",
"intle yl = myAdd(intl6 ul, intl6 u2)*);

Set entry parameters. Set algorithm parameters for a cast-after-sum addition and
saturation and rounding modes. To generate the replacement code, specify that the code
generator use the header and source files my IntAdd.h and myIntAdd.c.

setTfICOperationtionEntryParameters(tableEntry,
"EntryInfoAlgorithm®, "RTW_CAST_AFTER_OP",
"SaturationMode®, "RTW_SATURATE_ON_OVERFLOW®",
"RoundingMode®, “RTW_ROUND_SIMPLEST",
"ImplementationHeaderFile®, "mylntAdd.h",
"ImplementationSourceFile", "mylntAdd.c");

Add the entry to the table.

addEntry(crTable, tableEntry);

Replacement Entry That Assumes Implementation and Conceptual Argument Data Types Are the
Same

Create a table definition file that contains a function definition.

function crTable = crl_table_sinfcn()

Within the function body, create the code replacement table.

crTable = RTW.TflITable;

Create a table entry for a sin function, where the implementation arguments are the
same as the conceptual arguments.

tableEntry = createCRLEntry(crTable,
"double yl1 = sin(double ul)"*,
"yl = mySin(ul)*;

createCRLEntry

Set entry parameters. To generate the replacement code, specify that the code generator
use the header and source files mySin._.h and mySin.c.

setTfICFunctionEntryParameters(tableEntry,
"ImplementationHeaderFile®, “"mySin.h",
"ImplementationSourceFile®, "mySin.c");

Add the entry to the table.
addEntry(crTable, tableEntry);

. “Define Code Replacement Mappings”
. “Code You Can Replace from MATLAB Code”
. “Code You Can Replace From Simulink Models”

Input Arguments

crTable — Code replacement table
object

Table that stores one or more code replacement entries, each representing a potential
replacement for a function or operator. Each entry maps a conceptual representation of a
function or operator to an implementation representation and priority.

conceptualSpecification — Conceptual specification
character vector

Representation of the name or symbol and conceptual input and output arguments
for a function or operator that the software replaces, specified as a character vector.
Conceptual arguments observe naming conventions ('y1', 'ul', 'u2', ...) and data types
familiar to the code generator. Use the syntax table in “Description” on page 1-136 to
determine the syntax to use for your conceptual argument specification.

Example: "double y1 = sin(double ul)*
Example: "intl6 yl = intl6 ul + intl6 u2-

implementationSpecification — Implementation specification
character vector

Representation of the name and implementation input and output arguments for
a C or C++ replacement function, specified as a character vector. Implementation

1-143

1 Alphabetical List

1-144

arguments observe C/C++ name and data type specifications. Use the syntax table
in “Description” on page 1-136 to determine the syntax for your implementation
argument specification.

Example: "double y1 = my_sin(double ul)-*
Example: "intl6 yl = myAdd(intl6 ul, intl6 u2)*

Output Arguments

tableEntry — Code replacement table entry
object

Code replacement table entry that represents a potential code replacement for a function
or operator, returned as an object. Maps the conceptual representation of a function or
operator, conceptualSpecification, to the C/C++ implementation representation,
implementationSpecification.

See Also

See Also
addentry | RTW.TfITable | setTfICFunctionEntryParameters

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2015a

createToleranceFile

createToleranceFile

Class: cgv.CGV
Package: cgv

Create file correlating tolerance information with signal names

Syntax

cgvObj .createToleranceFile(Ffile_name , signal_list, tolerance_list)

Description

cgvObj .createToleranceFile(file_name , signal_list, tolerance_list)
creates a MATLAB file, named file_name, containing the tolerance specification for
each output signal name in signal_list. Each signal name in the signal_list
corresponds to the same location of a parameter name and value pair in the
tolerance_list.

Input Arguments

file_name

Name for the file containing the tolerance specification for each signal. Use this file as
input to cgv.CGV.compare and cgv.Batch.addTest

signal_list

A cell array of character vectors, where each vector is a signal name for data from the
model. Use cgv.CGV.getSavedSignals to view the list of available signal names in
the output data. signal_list can contain an individual signal or multiple signals. The
syntax for an individual signal name is:

signal_list = {"log_data.subsystem name.Data(:,1)"}
The syntax for multiple signal names is:

1-145

1 Alphabetical List

1-146

signal_list = {"log_data.block_name.Data(:,1)",...
"log_data.block_name.Data(:,2)", ...
"log_data.block_name.Data(:,3)",--.
"log_data.block_name._Data(:,4)"};

To specify a global tolerance for the signals, include the reserved signal name,
"global_tolerance”, in signal_list. Assign a global tolerance value in the
associated tolerance_list. If signal_list contains other signals, their associated
tolerance value overrides the global tolerance value. In this example, the global tolerance
is a relative tolerance of 0.02.

signal_list = {"global_tolerance", ...
"log_data.block_name.Data(:,1)",...
"log_data.block_name._Data(:,2)"};

tolerance_list = {{"relative”, 0.02},...
{"relative”, 0.015},{ absolute”, 0.05}};

Note: If a model component contains a space or newline character, MATLAB adds
parentheses and a single quote to the name of the component. For example, if the signal
name has a space, "block name®, MATLAB displays the signal name as:

log_data.("block name*®) .Data(:,1)
To use the signal name as input to a CGV function, "block name® must have two single
quotes in the signal _list. For example:

signal_list = {"log_data.(""block name®") .Data(:,1)"}

tolerance list

Cell array of cell arrays. Each element of the outer cell array is a cell array containing

a parameter name and value pair for the type of tolerance and its value. Possible
parameter names are "absolute” | "relative” | "function”. There is a one-to-one
mapping between each parameter name and value pair in the tolerance_list and a
signal name in the signal_list. For example, a tolerance_list for a signal_list
containing four signals might look like the following:

tolerance_list = {{"relative®, 0.02},{"absolute”, 0.06}, ...
{"relative”, 0.015},{ absolute”, 0.05}};

createToleranceFile

See Also

Topics
“Verify Numerical Equivalence with CGV”

1-147

1 Alphabetical List

1-148

crossReleaseExport

Export generated model code for cross-release reuse

Syntax

artifactsFolder crossReleaseExport(buildFolder)

Description

artifactsFolder = crossReleaseExport(buildFolder) processes generated
model component code in bui IdFolder to create cross-release code artifacts. These
artifacts are required if you want to reuse the generated code in a newer release. The
function places the artifacts in a folder modelComponent Release and returns the full
folder path.

Before you can run the function in a previous release, you must add the function to the
MATLAB search path for that release.

The function supports the export of only C code that is produced by the code generator.

Examples

Export Generated Code

This example shows how to export generated model component code in a previous
release.

Open the previous release.

Add crossReleaseExport function to the MATLAB search path.

addpath(fullfile(matlabRootCR, "toolbox","coder”,"xrelexport®));
matlabRootCR is the matlabroot value for your current release.

Create cross-release code artifacts.

crossReleaseExport

artifactsFolder = crossReleaseExport(fullfile(folderPath,’P1_ert_rtw’));

The returned value is the full path to the artifacts folder, which the
crossReleaselmport function requires.

. “Cross-Release Shared Utility Code Reuse”

. “Cross-Release Code Integration”

Input Arguments

buildFolder — Build folder

character vector

File path to the folder with generated model component code.

Output Arguments

artifactsFolder — Artifacts folder
character vector

File path to the folder with cross-release artifacts, which the crossReleaselmport

function requires.

See Also

See Also

crossReleaselmport | sharedCodeUpdate

Topics
“Cross-Release Shared Utility Code Reuse”
“Cross-Release Code Integration”

Introduced in R2016b

1-149

1 Alphabetical List

crossReleaselmport

Import generated model code from a previous release as SIL or PIL blocks

Syntax

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode*” ,mode)

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode*® ,mode, "ConfigParams”®,
additionalParameterList)

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode” ,mode, "CodeLocation® ,anchorFolder)
blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode” ,mode, "DataDictionary” ,dictionaryFile)

Description

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode” ,mode) uses the cross-release artifacts in
artifactsFolder to import previously generated model component code into the
current release. The function imports the code as a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) block and returns the numeric handle of the block. The
function displays the block in a new model window.

You can replace the model component in an existing model with the SIL or PIL block.
Or, you can use the SIL or PIL block as a component in a new model. When you run
a simulation or build the model, the model component uses generated code from the
previous release.

To build a SIL or PIL block, the function by default uses the following parameters of the
Simulink model specified by configSet:

+ SystemTargetFile

* Toolchain or TemplateMakefile

+ ExistingSharedCode

+ UtilityFuncGeneration

1-150

crossReleaselmport

*+ PortableWordSizes
+ TargetLang

+ Hardware Implementation pane parameters

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode® ,mode, "ConfigParams™®,
additionalParameterList) uses additional parameters of the Simulink model for
building the SIL or PIL block.

By default, the function assumes that the generated code resides in the build folder
(Simulink) that you specified for crossReleaseExport when creating the cross-release
artifacts. If you relocate the generated code, use an anchor folder and maintain the
original code folder names and structure:

* For top-model code, relocate codeGenerationFolder/modelName _ert_rtw to
anchorFolder /modelName_ert_rtw.

* For model reference code, relocate codeGenerationFolder/slprj/ert/
referencedModelName to anchorFolder/slprj/ert/referencedModelName.

* For subsystem code, relocate codeGenerationFolder/subsystemName_ert_rtw
to anchorFolder/subsystemName_ert_rtw.

blockHandle = crossReleaselmport(artifactsFolder,
configSet, "SimulationMode” ,mode, "CodeLocation” ,anchorFolder) uses the
same cross-release artifacts to import the relocated generated code.

blockHandle = crossReleaselmport(artifactsFolder,

configSet, "SimulationMode” ,mode, "DataDictionary” ,dictionaryFile)
imports generated code that uses data types specified by a data dictionary. If configSet
is a model associated with a data dictionary, you do not have to specify the name-value
pair. By default, the function identifies and uses the data dictionary when it imports the
generated code. If you specify a name-value pair, the data dictionary that you specify
takes precedence over the default data dictionary.

Examples

Import Generated Code from Previous Release

This example shows how to import generated model code from a previous release.

1-151

1 Alphabetical List

Specify the location of the cross-release artifacts folder.

artifactsFolder = fullfile(pwd, "R2015bWork®, "P1 _R2015b%");

Import code for the integration model Controller.
crossReleaselmport(artifactsFolder, "Controller”, "SimulationMode®,"SIL");
The function displays a SIL block in a new Simulink editor window.

. “Cross-Release Shared Utility Code Reuse”

. “Cross-Release Code Integration”

Input Arguments

artifactsFolder — Artifacts folder
character vector

Folder with cross-release artifacts created when you run the crossReleaseExport
command in a previous release.

configSet — Configuration object or model
Simulink.ConfigSet|character vector

A configuration set or Simulink model on the MATLAB path.

mode — Block mode
*SIL" | "PIL" | {"SIL","PIL"}

Simulation mode for block with imported code:

*+ "SIL" — Create SIL block.
* "PIL" — Create PIL block.
« {"SIL","PIL"} — Create SIL and PIL blocks.

additionalParameterList — Additional parameters
cell array of character vectors

Additional parameters for building the SIL or PIL block.

anchorFolder — Anchor folder
character vector

1-152

crossReleaselmport

Path to an anchor folder. This folder contains the generated code folder that you
relocated after creating cross-release artifacts.

dictionaryFile — Dictionary file
character vector

Data dictionary that specifies data types used by the generated code.

Output Arguments

blockHandle — Numeric handle of a block
double | array of doubles

Numeric handle of a block. Returned as a double if mode is *"SIL" or "PIL". Returned as
an array of doubles if mode is {"SIL", "PIL"}.

See Also

See Also

crossReleaseExport | sharedCodeUpdate

Topics
“Cross-Release Shared Utility Code Reuse”
“Cross-Release Code Integration”

Introduced in R2016b

1-153

1 Alphabetical List

1-154

dir

Files and folders in current IDE window

Syntax

dir(IDE_0bj)
d = dir(IDE_Obj)

IDEs

This function supports the following IDEs:

Analog Devices VisualDSP++

Texas Instruments Code Composer Studio v3

Description

dir(IDE_Obj) lists the files and folders in the IDE working folder, where IDE_Obj is
the object that references the IDE. IDE_Obj can be either a single object, or a vector of
objects. When IDE_ObJ is a vector, dir returns the files and folders referenced by each
object.

d = dir(IDE_0bj) returns the list of files and folders as an M-by-1 structure in d with
the fields for each file and folder shown in the following table.

Field Name Description

name Name of the file or folder.

date Date of most recent file or folder modification.

bytes Size of the file in bytes. Folders return 0 for the number
of bytes.

isdirectory 0 if 1t is a file, 1 if it is a folder.

datenum Code Composer Studio IDE also returns the modification
date as a MATLAB serial date number.

dir

To view the entries in structure d, use an index in the syntax at the MATLAB prompt, as
shown by the following examples.

+ d(3) returns the third element in the structure.
* d(10) returns the tenth element in the structure d.
* d(4).date returns the date field value for the fourth structure element.

See Also

cd | open

Introduced in R2011a

1-155

1 Alphabetical List

1-156

disable

Disable RTDX interface, specified channel, or RTDX channels

Note: Support for disable on C5000 processors will be removed in a future version.

Syntax

disable(rx, "channel™)
disable(rx, "all™)
disable(rx)

IDEs

This function supports the following IDEs:

Texas Instruments Code Composer Studio v3

Description

disable(rx, "channel™) disables the open channel specified by the character vector
channel, for rx. Input argument rx represents the RTDX portion of the associated link
to the IDE.

disable(rx, "all") disables the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels or the interface.
To use disable, meet the following requirements:

1 The processor must be running a program.

disable

2 You enabled the RTDX interface.

3 Your processor program polls periodically.

Examples

When you have opened and used channels to communicate with a processor, disable the
channels and RTDX before ending your session. Use disable to switch off open channels
and disable RTDX, as follows:

disable(rtdx(IDE_Obj),"all") % Disable the open RTDX channels.
disable(rtdx(IDE_0bj)) % Disable RTDX interface.

See Also

close | enable | open

Introduced in R2011a

1-157

1 Alphabetical List

display (IDE Object)

Properties of IDE handle

Syntax

display(IDE_O0Obj)

IDEs

This function supports the following IDEs:

Analog Devices Visual DSP++

Texas Instruments Code Composer Studio v3

Description

display(IDE_O0Obj) displays the properties and property values of the IDE
handlelDE_Obj.

For example, after you creating IDE_Obj with a constructor, using the display method
with IDE_Obj returns a set of properties and values:

display(IDE_Obj)

IDE Object:
Propertyl - valuea
Property?2 = valueb
Property3 - valuec
Property4 - valued

See Also

get

Introduced in R2011b

1-158

display

display

Generate message that describes how to open code execution profiling report

Syntax

myExecutionProfile
myExecutionProfile.display

Description

myExecutionProfile or myExecutionProfile.display generates a message that
describes how you can open the code execution profiling report.

myExecutionProfile is a workspace variable, specified through the configuration
parameter CodeExecutionProfileVariable and generated by a simulation.

See Also

report

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Introduced in R2011a

1-159

1 Alphabetical List

1-160

displayReport

Class: cgv.Config
Package: cgv

Display results of comparing configuration parameter values

Syntax

cfgObj .displayReport()

Description
cfgobj .displayReport() displays the results at the MATLAB Command Window

of comparing the configuration parameter values for the model with the values that the
object recommends. cfgObj is a handle to a cgv.Config object.

See Also

Topics
“Verify Numerical Equivalence Between Two Modes of Execution of a Model”

coder. MATLABCodeTemplate.emitSection

coder.MATLABCodeTemplate.emitSection

Class: coder. MATLABCodeTemplate
Package: coder

Emit comments for template section

Syntax

sectionComments = emitSection(sectionName, isCPPComment)

Description

sectionComments = emitSection(sectionName, isCPPComment) emits comments
for the code template section that sectionName specifies. If isSCPPComment is true,
emitSection uses C++ style comments. If emitSection is False, it uses C style
comments. Use emitSection to preview banners before you generate code. Before
invoking emitSection to emit the banner for a template section, you must set the
values for all tokens used in that section.

Input Arguments

sectionName — Name of templates section
character vector

Name of template section specified as one of the following values:

"FileBanner- "VariableDeclarationsBanner*
"FunctionBanner"® "VariableDefinitionsBanner”
"SharedUtilityBanner"® "FunctionDeclarationsBanner*
"FileTrailer® "FunctionDefinitionsBanner~
"IncludeFilesBanner* "CustomSourceCodeBanner*
"TypeDefinitionsBanner"” "CustomHeaderCodeBanner*

1-161

1 Alphabetical List

"NamedConstantsBanner*™

iSCPPComment — C++ comment style flag
true | false

Specify true for C++ style comments. Specify False for C style comments.

Output Arguments

sectionComments — Comments for template section
character vector

Comments for the specified section, returned as a character vector.

Examples

Emit File Banner from Default Template

This example shows how to set the Fi leName token value and emit the default file
banner.
Create a coder _.MATLABCodeTemplate object from the default template.

newObj = coder.MATLABCodeTemplate

Set the Fi leName token value.

fileN = "myfilename.c”;
newObj .setTokenValue("FileName®, FfileN)

Emit the file banner.

newObj .emitSection("FileBanner®, false)

The emitSection method generates the file banner replacing the Fi leName token with
the file name that you specified. It replaces the MATLABCoderVersion token with the

current MATLAB Coder version number. It replaces the SourceGeneratedOn token
with the time stamp.

/*
* File: myfilename.c

1-162

coder. MATLABCodeTemplate.emitSection

*

* MATLAB Coder version 2.7

* C/C++ source code generated on : 07-Apr-2014 17:43:32
*

/

Emit Include Files Banner from Custom Template

This example shows how to create and modify a custom code generation template (CGT)
file. It shows how to emit the include files section banner from the custom CGT file.

Create a local copy of the default CGT file for MATLAB Coder. Name it myCGTFile.cgt.

In your local copy of the CGT File, in the IncludeFi lesBanner open tag, change the
style to ""box"".

<IncludeFilesBanner style="box">
Include Files
</IncludeFilesBanner>

Create a MATLABCodeTemplate object from your custom CGT file.

CGTFile = "myCGTFile.cgt”;
newObj= coder _MATLABCodeTemplate(CGTFile);

Emit the include files section banner using C++ style comments.

newObj .emitSection(” IncludeFilesBanner®, true)

The emitSection method generates the include files section banner using the box style
with C++ style comments.
JITIIIIIIITIITITIIIIIITITIITIIITIIIII717/7117/77/1/17/1717/71717/1/[1////1/////

// Include Files //
L1111 7177777777777777777777777777777777/77777///77777//7777///7/777////77/7///7777

. “Generate Custom File and Function Banners for C/C++ Code”

See Also

See Also

coder MATLABCodeTemplate.setTokenValue |
coder. MATLABCodeTemplate.getTokenValue |
coder. MATLABCodeTemplate.getCurrentTokens

1-163

1 Alphabetical List

Topics
“Generate Custom File and Function Banners for C/C++ Code”
“Code Generation Template Files for MATLAB Code”

1-164

enable

enable

Enable RTDX interface, specified channel, or RTDX channels

Note: Support for enable on C5000 processors will be removed in a future version.

Syntax
enable(rx, "channel™)

enable(rx,"all™)
enable(rx)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

enable(rx, "channel™) enables the open channel specified by the character vector
channel, for RTDX link rx. The input argument rx represents the RTDX portion of the
associated link to the IDE.

enable(rx, "all™) enables the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels. To use enable,
meet the following requirements:

1-165

1 Alphabetical List

1-166

1 The processor must be running a program when you enable the RTDX interface.
When the processor is not running, the state defaults to disabled.

Enable the RTDX interface before you enable individual channels.
Channels must be open.

Your processor program must poll periodically.

O b WD

Using code in the program running on the processor to enable channels overrides the
default disabled state of the channels.

Examples

To use channels to RTDX, you must both open and enable the channels:

IDE_Obj = ticcs; % Create a new connection to the IDE.
enable(rtdx(IDE_Obj)) % Enable the RTDX interface.
open(rtdx(IDE_Obj), " inputchannel®,*w") % Open a channel for sending
% data to the processor.
enable(rtdx(IDE_Obj), "inputchannel®) % Enable the channel so you can use
% it.

See Also

disable | open

Introduced in R2011a

enableCPP

enableCPP

Enable C++ support for function entry in code replacement table

Syntax

enableCPP(hEntry)

Arguments

hEntry

Handle to a code replacement function entry previously returned by hEntry =
RTW.TFICFunctionEntry or hEntry = MyCustomFunctionEntry, where
MyCustomFunctionEntry is a class derived from RTW. TFICFunctionEntry.

Description

The enableCPP function enables C++ support for a function entry in a code replacement
table. This allows you to specify a C++ namespace for the implementation function
defined in the entry (see the setNameSpace function).

Note: When you register a code replacement library containing C++ function entries,
you must specify the value {"C++"} for the LanguageConstraint property of the
code replacement registry entry. For more information, see “Register Code Replacement
Mappings”.

Examples

In the following example, the enableCPP function is used to enable C++ support,
and then the setNameSpace function is called to set the namespace for the sin
implementation function to std.

fcn_entry = RTW.TFICFunctionEntry;
fcn_entry.setTfICFunctionEntryParameters(...

1-167

1 Alphabetical List

"Key", "sin®, ...
"Priority”, 100, ...
"ImplementationName”®, "sin®, ...

"ImplementationHeaderFile™, “cmath®);
fcn_entry.enableCPP();
fcn_entry.setNameSpace("std");

See Also

registerCPPFunctionEntry | setNameSpace

Topics

“Math Function Code Replacement”

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2010a

1-168

excludeCheck

excludeCheck

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Exclude checks

Syntax

excludeCheck(obj, checkID)

Description

excludeCheck(obj, checkID) excludes a check from the Code Generation Advisor
when a user specifies the objective. When a user selects multiple objectives, if the user
specifies an additional objective that includes this check as a higher priority objective,
the Code Generation Advisor displays this check.

Input Arguments

obj Handle to a code generation objective object previously created.

checkID Unique identifier of the check that you exclude from the new
objective.

Examples

Exclude the Identify questionable code instrumentation (data I/0) check from the
objective.

excludeCheck(obj, "mathworks.codegen.Codelnstrumentation®);

See Also

Simulink.ModelAdvisor

1-169

1 Alphabetical List

Topics
“Create Custom Code Generation Objectives”
“About IDs” (Simulink)

1-170

flush

flush

Flush data or messages from specified RTDX channels

Note: flush support for C5000 processors will be removed in a future version.

Syntax

Fflush(rx,channel ,num,timeout)
Flush(rx,channel ,num)
flush(rx,channel,[],timeout)
Fflush(rx,channel)

Fflush(rx, "all®)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

flush(rx,channel ,num,timeout) removes num oldest data messages from the
RTDX channel queue specified by channel in rx. To determine how long to wait for the
function to complete, Flush uses timeout (in seconds) rather than the global timeout
period stored in rx. Flush applies the timeout processing when it flushes the last
message in the channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only when you specify a
channel configured for read access.

flush(rx,channel ,num) removes the num oldest messages from the RTDX channel
queue in rx specified by the character vector channel. flush uses the global timeout
period stored in rx to determine how long to wait for the process to complete. Compare

1-171

1 Alphabetical List

1-172

this to the previous syntax that specifies the timeout period. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel,[],timeout) removes the data messages from the RTDX channel
queue specified by channel in rx. To determine how long to wait for the function to
complete, Flush uses timeout (in seconds) rather than the global timeout period stored
in rx. Flush applies the timeout processing when it flushes the last message in the
channel queue, because Flush performs a read to advance the read pointer past the last
message. Use this calling syntax only when you specify a channel configured for read
access.

Fflush(rx,channel) removes the pending data messages from the RTDX channel
queue specified by channel in rx. Unlike the preceding syntax options, you use this
statement to remove messages for both read-configured and write-configured channels.

flush(rx, "all") removes the data messages from the RTDX channel queues.

When you use Flush with a write-configured RTDX channel, the code generator sends
the messages in the write queue to the processor. For read-configured channels, flush
removes one or more messages from the queue depending on the input argument num you
supply and disposes of them.

Examples

To show how to use Flush, this example writes data to the processor over the input
channel, then uses Flush to remove a message from the read queue for the output
channel:

IDE_Obj = ticcs;

rx = rtdx(IDE_Obj);

open(rx, "ichan®,"w");

enable(rx, "ichan®);

open(rx, "ochan®,"r");

enable(rx, "ochan");

indata = 1:10;

writemsg(rx, "ichan®,intl6(indata));
Fflush(rx, "ochan*,1);

Now flush the remaining messages from the read channel:

Fflush(rx, "ochan®,"all");

flush

See Also

enable | open

Introduced in R2011a

1-173

1 Alphabetical List

1-174

getAlgorithmParameters

Examine algorithm parameter settings for lookup table function code replacement table
entry

Syntax

algParams = getAlgorithmParameters(tableEntry)

Description

algParams = getAlgorithmParameters(tableEntry) returns the algorithm
parameter settings for the lookup table function identified in the code replacement
table entry tableEntry. If you call getAlgorithmParameters before using
setAlgorithmParameters, getAlgorithmParameters lists the default parameter
settings for the lookup table function.

Examples

Examine Default Parameter Settings for prelookup Table Entry

Create a code replacement table.

crTable = RTW.TfITable;
Create a table entry for a function.
tableEntry = RTW.TFICFunctionEntry;
Identify the table entry as an entry for the prelookup function.
setTFICFunctionEntryParameters(tableEntry,
"Key*®, "prelookup”,

"Priority®, 100,
"ImplementationName®, “"myPrelookup®);

Get the algorithm parameter settings for the prelookup function table entry.

algParams = getAlgorithmParameters(tableEntry)

getAlgorithmParameters

algParams =
Prelookup with properties:

ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]
RndMeth: [1x1 coder.algorithm.parameter.RndMeth]
IndexSearchMethod: [1x1 coder.algorithm.parameter.IndexSearchMethod]
UselLastBreakpoint: [1x1 coder.algorithm.parameter.UseLastBreakpoint]

RemoveProtectionlnput: [1x1 coder.algorithm.parameter.RemoveProtectionlnput]

Examine the information for parameter ExtrapMethod.
algParams.ExtrapMethod
ans =
ExtrapMethod with properties:
Name: “ExtrapMethod*
Options: {"Linear®™ “Clip"}
Primary: 1
Value: {"Linear™}
Examine the information for parameter RndMeth.
algParams.RndMeth
ans =
RndMeth with properties:
Name: “"RndMeth*®
Options: {1x7 cell}
Primary: O
Value: {1x7 cell}
Examine the current Value setting.
algParams.RndMeth.Value
ans =
Columns 1 through 6
“Ceiling” "Convergent” “"Floor* “Nearest* “Round* “Simplest”

Column 7

“Zero*

Examine the information for parameter IndexSearchMethod.
algParams. IndexSearchMethod
ans =
IndexSearchMethod with properties:
Name: " IndexSearchMethod*®

Options: {"Linear search® “Binary search® “Evenly spaced points®}
Primary: O

1-175

1 Alphabetical List

Value: {"Binary search® “Evenly spaced points® “Linear search"}

Examine the information for parameter UseLastBreakpoint.
algParams.UselLastBreakpoint
ans =
UselLastBreakpoint with properties:
Name: “UselLastBreakpoint*®
Options: {"off" “on"}
Primary: O
Value: {"off" “on"}
Examine the information for parameter RemoveProtectionlnput.
algParams.RemoveProtectionlnput
ans =
RemoveProtectionlnput with properties:
Name: “RemoveProtectionlnput®
Options: {"off" “on"}

Primary: O
Value: {"off" “on"}

Examine Modified Parameter Setting for 1ookup2D Table Entry

Create a code replacement table.

crTable = RTW.TflTable;

Create a table entry for a function.

tableEntry = RTW.TFfICFunctionEntry;

Identify the table entry as an entry for the lookup2D function.
setTfICFunctionEntryParameters(tableEntry, ...
"Key®, "lookup2D*, ...
“Priority”, 100, ...
“ImplementationName®, “myLookup2D®);
Get the algorithm parameter settings for the lookup2D function table entry.
algParams = getAlgorithmParameters(tableEntry)
algParams =
Lookup with properties:
InterpMethod: [1x1 coder.algorithm.parameter.InterpMethod]
ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]
RndMeth: [1x1 coder.algorithm.parameter.RndMeth]

IndexSearchMethod: [1x1 coder.algorithm.parameter . IndexSearchMethod]
UselLastTableValue: [1x1 coder.algorithm.parameter.UselLastTableValue]

1-176

getAlgorithmParameters

RemoveProtectionlnput: [1x1 coder.algorithm.parameter.RemoveProtectionlnput]
SaturateOnlintegerOverflow: [1x1 coder.algorithm.parameter.SaturateOnintegerOverflow]
SupportTunableTableSize: [1x1 coder.algorithm.parameter.SupportTunableTableSize]
BPPower2Spacing: [1x1 coder.algorithm.parameter.BPPower2Spacing]

Display the possible index search method settings.
algParams. IndexSearchMethod.Options
ans =

“Linear search*® “Binary search*® "Evenly spaced points*®

Display the current index search method setting.
algParams. IndexSearchMethod.Value
ans =

“Linear search*® “Binary search*® “Evenly spaced points*®
By default, the parameter is set to the same value set.

Set the index search method to binary search.

algParams. IndexSearchMethod = "Binary search”;

Verify the modified parameter setting.
algParams. IndexSearchMethod.Value

ans =

"Binary search”

Input Arguments

tableEntry — Code replacement table entry for a lookup table function
object

Code replacement table entry that you previously created and represents a potential
code replacement for a lookup table function. The entry must identify the lookup table
function for which you are calling getAlgorithmParameters.

1 Create the entry. For example, call the function RTW. TFICFunctionEntry.

tableEntry = RTW.TFICFunctionEntry;

2 Specify the name of the lookup table function for which you created the entry. Use
the Key parameter in a call to setTFICFunctionEntryParameters. The following
function call specifies the lookup table function prelookup.

1-177

1 Alphabetical List

1-178

setTFICFunctionEntryParameters(tableEntry, ...
"Key", "prelookup®, ...
"Priority®, 100, ...
"ImplementationName®, “myPrelookup®);

Output Arguments

algParams — Algorithm parameter settings for a lookup table function
object

Algorithm parameter settings for the lookup table function identified with the Key
parameter in tableEntry.

See Also

See Also
addentry | RTW.TFICFunctionEntry | RTW.TFflTable |
setAlgorithmParameters | setTfICFunctionEntryParameters

Topics

“Lookup Table Function Code Replacement”
“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2015a

getArgCategory

getArgCategory

Class: RTW.Model CPPArgsClass
Package: RTW

Get argument category for Simulink model port from model-specific C++ class interface

Syntax

category = getArgCategory(obj, portName)

Description

category = getArgCategory(obj, portName) gets the category — "Value®,
"Pointer”, or "Reference”™ — of the argument corresponding to a specified Simulink
model inport or outport from a specified model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpeciftication (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

category Character vector specifying the argument category — "Value®,
"Pointer”, or "Reference” — for the specified Simulink model
port.

Alternatives

To view argument categories in the Simulink Configuration Parameters graphical user
interface, go to the Interface pane and click the Configure C++ Class Interface

1-179

1 Alphabetical List

1-180

button. This button launches the Configure C++ class interface dialog box, where you
can display and configure the step method for your model class. In the 1/0 arguments
step method view of this dialog box, click the Get Default Configuration button to

display step method argument categories. For more information, see “Configure Step
Method for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

getArgCategory

getArgCategory

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get argument category for Simulink model port from model-specific C function prototype

Syntax

category = getArgCategory(obj, portName)

Description
category = getArgCategory(obj, portName) gets the category, "Value® or

"Pointer”, of the argument corresponding to a specified Simulink model inport or
outport from a specified model-specific C function prototype.

Input Arguments
obj Handle to a model-specific C prototype function

control object previously returned by obj =
RTW.getFunctionSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

category Character vector specifying the argument category, "Value"® or
"Pointer”, for the specified Simulink model port.

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
argument categories. See “Model Specific C Prototypes View”.

1-181

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-182

getArgName

getArgName

Class: RTW.Model CPPArgsClass
Package: RTW

Get argument name for Simulink model port from model-specific C++ class interface

Syntax

argName = getArgName(obj, portName)

Description

argName = getArgName(obj, portName) gets the argument name corresponding to
a specified Simulink model inport or outport from a specified model-specific C++ class
interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpeciftication (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

argName Character vector specifying the argument name for the specified
Simulink model port.

Alternatives

To view argument names in the Simulink Configuration Parameters graphical user
interface, go to the Interface pane and click the Configure C++ Class Interface

1-183

1 Alphabetical List

1-184

button. This button launches the Configure C++ class interface dialog box, where you
can display and configure the step method for your model class. In the 1/0 arguments
step method view of this dialog box, click the Get Default Configuration button to

display step method argument names. For more information, see “Configure Step Method
for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

getArgName

getArgName

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get argument name for Simulink model port from model-specific C function prototype

Syntax

argName = getArgName(obj, portName)

Description

argName = getArgName(obj, portName) gets the argument name corresponding to
a specified Simulink model inport or outport from a specified model-specific C function
prototype.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

argName Character vector specifying the argument name for the specified
Simulink model port.

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
argument names. See “Model Specific C Prototypes View”.

1-185

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-186

getArgPosition

getArgPosition

Class: RTW.Model CPPArgsClass
Package: RTW

Get argument position for Simulink model port from model-specific C++ class interface

Syntax

position = getArgPosition(obj, portName)

Description

position = getArgPosition(obj, portName) gets the position — 1 for first, 2 for
second, etc. — of the argument corresponding to a specified Simulink model inport or
outport from a specified model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

position Integer specifying the argument position — 1 for first, 2 for
second, etc. — for the specified Simulink model port. Without an
argument for the specified port, the function returns 0.

Alternatives

To view argument positions in the Simulink Configuration Parameters graphical user
interface, go to the Interface pane and click the Configure C++ Class Interface

1-187

1 Alphabetical List

1-188

button. This button launches the Configure C++ class interface dialog box, where you
can display and configure the step method for your model class. In the 1/0 arguments
step method view of this dialog box, click the Get Default Configuration button

to display step method argument positions. For more information, see “Configure Step
Method for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

getArgPosition

getArgPosition

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get argument position for Simulink model port from model-specific C function prototype

Syntax

position = getArgPosition(obj, portName)

Description

position = getArgPosition(obj, portName) gets the position — 1 for first, 2 for
second, etc. — of the argument corresponding to a specified Simulink model inport or
outport from a specified model-specific C function prototype.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

position Integer specifying the argument position — 1 for first, 2 for
second, etc. — for the specified Simulink model port. Without an
argument for the specified port, the function returns 0.

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
argument positions. See “Model Specific C Prototypes View”.

1-189

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-190

getArgQualifier

getArgQualifier

Class: RTW.Model CPPArgsClass
Package: RTW

Get argument type qualifier for Simulink model port from model-specific C++ class
interface

Syntax

qualifier = getArgQualifier(obj, portName)

Description

qualifier = getArgQualifier(obj, portName) gets the type qualifier —
"none”, "const”, "const *", "const * const”", or "const &" — of the argument
corresponding to a specified Simulink model inport or outport from a specified model-
specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

qualifier Character vector specifying the argument type qualifier —
“none”®, "const", "const **, "const * const", or "const
&" — for the specified Simulink model port.

1-191

1 Alphabetical List

1-192

Alternatives

To view argument qualifiers in the Simulink Configuration Parameters graphical user
interface, go to the Interface pane and click the Configure C++ Class Interface
button. This button launches the Configure C++ class interface dialog box, where you
can display and configure the step method for your model class. In the 1/0 arguments
step method view of this dialog box, click the Get Default Configuration button to
display step method argument qualifiers. For more information, see “Configure Step
Method for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

getArgQualifier

getArgQualifier

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get argument type qualifier for Simulink model port from model-specific C function
prototype

Syntax

qualifier = getArgQualifier(obj, portName)

Description

qualifier = getArgQualifier(obj, portName) gets the type qualifier — "none”,
"const”®, "const *", or "const * const”"— of the argument corresponding to a
specified Simulink model inport or outport from a specified model-specific C function
prototype.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification (modelName).

portName Character vector specifying the name of an inport or outport in
your Simulink model.

Output Arguments

qualifier Character vector specifying the argument type qualifier —
"none”, "const”, "const **, or "const * const"— for the
specified Simulink model port.

1-193

1 Alphabetical List

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
argument qualifiers. See “Model Specific C Prototypes View”.

See Also

Topics
“Control Generation of Function Prototypes”

1-194

getbuildopt

getbuildopt

Generate structure of build tools and options

Syntax

etbuildopt(IDE 0bj)

bt
cs etbuildopt(IDE Obj,file)

=g
=g

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

bt = getbuildopt(IDE_Obj) returns an array of structures in bt. Each structure
includes an entry for each defined build tool. This list of build tools comes from the active
project and active build configuration. Included in the structure is a character vector that
describes the command-line tool options. bt uses the following format for elements in the
structures:

+ bt(n).name — Name of the build tool.
+ bt(n).optstring — command-line switches for build tool in bt(n).

cs = getbuildopt(IDE Obj,file) returns a character vector of build options for
the source file specified by file. file must exist in the active project. The resulting cs
character vector comes from the active build configuration. The type of source file (from
the file extension) defines the build tool used by the cs character vector.

Introduced in R2011a

1-195

1 Alphabetical List

1-196

getClassName

Class: RTW.ModelCPPClass
Package: RTW

Get class name from model-specific C++ class interface

Syntax

clsName = getClassName(obj)

Description

clsName = getClassName(obj) gets the name of the class described by the specified
model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpecification (modelName).

Output Arguments

clIsName A character vector specifying the name of the class described by
the specified model-specific C++ class interface.

Alternatives

To view the model class name in the Simulink Configuration Parameters graphical
user interface, go to the Interface pane and click the Configure C++ Class Interface
button. This button launches the Configure C++ class interface dialog box, which

getClassName

displays the model class name and allows you to display and configure the step method
for your model class. For more information, see “Configure Step Method for Your Model
Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

1-197

1 Alphabetical List

1-198

getCoderExecutionProfile

Extract execution-time profile for code generated from MATLAB function

Syntax

myExecutionProfile=getCoderExecutionProfile("myMATLABFunction®);

Description

myExecutionProfile=getCoderExecutionProfile("myMATLABFunction™);
creates a workspace variable that contains the execution-time profile of the code
generated from your MATLAB function.

Run the command after the completion and termination of the SIL/PIL execution of your
MATLAB function.

See Also

Sections | TimerTicksPerSecond | report

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2014b

coder. MATLABCodeTemplate.getCurrentTokens

coder. MATLABCodeTemplate.getCurrentTokens

Class: coder. MATLABCodeTemplate
Package: coder

Get current tokens

Syntax

currentTokens = getCurrentTokens()

Description

currentTokens getCurrentTokens() returns list of current tokens in the
MATLABCodeTemplate object

Output Arguments

currentTokens — Current tokens
cell array of character vectors

A list of current tokens in the MATLABCodeTemplate object, returned as a cell array of
character vectors.

Examples

Create a MATLABCodeTemplate object with the default template, then list its tokens.

newObj = coder_MATLABCodeTemplate;

% Creates a MATLABCodeTemplate object from the default template
newObj -getCurrentTokens()

% Returns a list of tokens for the template

1-199

1 Alphabetical List

See Also

See Also

coder MATLABCodeTemplate.setTokenValue |
coder. MATLABCodeTemplate.getTokenValue |
coder. MATLABCodeTemplate.emitSection

Topics
“Generate Custom File and Function Banners for C/C++ Code”
“Code Generation Template Files for MATLAB Code”

1-200

getDefaultConf

getDefaultConf

Class: RTW.ModelCPPClass
Package: RTW

Get default configuration information for model-specific C++ class interface from
Simulink model

Syntax

getDefaultConf(obj)

Description

getDefaultConf(obj) initializes the specified model-specific C++ class interface to

a default configuration, based on information from the ERT-based Simulink model to
which the interface is attached. On the first invocation, class and step method names and
step method properties are set to default values. On subsequent invocations, only step
method properties are reset to default values.

Before calling this function, you must call attachToModel, to attach the C++ class
interface to a loaded model.

Input Arguments

obj Handle to a model-specific C++ class interface
control object, such as a handle previously returned
by obj = RTW._ModelCPPArgsClassor obj =
RTW.ModelCPPDefaultClass.

Alternatives

To view C++ class interface default configuration information in the Simulink
Configuration Parameters graphical user interface, go to the Interface pane and click

1-201

1 Alphabetical List

1-202

the Configure C++ Class Interface button. This button launches the Configure C+

+ class interface dialog box, where you can display and configure the step method for
your model class. In the 1/0 arguments step method view of this dialog box, click
the Get Default Configuration button to display default configuration information.
In the Default step method view, you can see the default configuration information

without clicking a button. For more information, see “Configure Step Method for Your
Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

getDefaultConf

getDefaultConf

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get default configuration information for model-specific C function prototype from
Simulink model

Syntax

getDefaultConf(obj)

Description

getDefaultConf(obj) invokes the specified model-specific C function prototype to
initialize the properties and the step function name of the function argument to a default
configuration based on information from the ERT-based Simulink model to which it is
attached. If you invoke the command again, only the properties of the function argument
are reset to default values.

Before calling this function, you must call attachToModel, to attach the function
prototype to a loaded model.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.ModelSpecificCPrototype.

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
the default configuration. See “Model Specific C Prototypes View”.

1-203

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-204

getFunctionName

getFunctionName

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get function name from model-specific C function prototype

Syntax

fcnName = getFunctionName(obj, fcnType)

Description

fcnName = getFunctionName(obj, fcnType) gets the name of the step or initialize
function described by the specified model-specific C function prototype.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification(modelName).

fcnType Optional character vector specifying which function name to
get. Valid options are "step” and "init". If fcnType is not
specified, gets the step function name.

Output Arguments

fcnName A character vector specifying the name of the function described
by the specified model-specific C function prototype.

Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
function names. See “Model Specific C Prototypes View”.

1-205

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-206

Name

Name

Get name of profiled code section

Syntax

SectionName = NthSectionProfile.Name

Description

SectionName = NthSectionProfile.Name returns the name that identifies the
profiled code section.

The software generates an identifier based on the model entity that corresponds to the
profiled section of code.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder._profile.ExecutionTime property Sections.

Output Arguments

SectionName

Name that identifies profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Number |

NumCalls | MaximumExecutionTimeCal INum | MaximumSelfTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-207

1 Alphabetical List

1-208

Topics
“Code Execution Profiling with SIL and PIL”

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

Name

Name

Get name of profiled code section

Syntax

SectionName = NthSectionProfile.Name

Description

SectionName = NthSectionProfile.Name returns the name that identifies the
profiled code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

SectionName

Name that identifies profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Number

| MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

1-209

1 Alphabetical List

Introduced in R2012b

1-210

getNamespace

getNamespace

Class: RTW.ModelCPPClass
Package: RTW

Get namespace from model-specific C++ class interface

Syntax

nsName = getNamespace(obj)

Description

nsName = getNamespace(obj) gets the namespace of the class described by the
specified model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpecification (modelName).

Output Arguments

nsName A character vector specifying the namespace of the class described
by the specified model-specific C++ class interface.

Alternatives

To view the model namespace in the Simulink Configuration Parameters graphical
user interface, go to the Interface pane and click the Configure C++ Class Interface
button. This button launches the Configure C++ class interface dialog box, which

1-211

1 Alphabetical List

displays the model class name and namespace and allows you to display and configure
the step method for your model class. For more information, see “Configure Step Method
for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

1-212

getNumArgs

getNumArgs

Class: RTW.ModelCPPClass
Package: RTW

Get number of step method arguments from model-specific C++ class interface

Syntax

num = getNumArgs(obj)

Description

num = getNumArgs(obj) gets the number of arguments for the step method described
by the specified model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpeciftication (modelName).

Output Arguments

num An integer specifying the number of step method arguments.

Alternatives

To view the number of step method arguments in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and click the Configure
C++ Class Interface button. This button launches the Configure C++ class interface
dialog box, where you can display and configure the step method for your model class.

1-213

1 Alphabetical List

In the 1/0 arguments step method view of this dialog box, click the Get Default
Configuration button to display the step method arguments. For more information, see
“Configure Step Method for Your Model Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

1-214

getNumArgs

getNumArgs

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get number of function arguments from model-specific C function prototype

Syntax

num = getNumArgs(obj)

Description
num = getNumArgs(obj) gets the number of function arguments for the function

described by the specified model-specific C function prototype.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification(modelName).

Output Arguments
num An integer specifying the number of function arguments.
Alternatives

Click the Get Default Configuration button in the Model Interface dialog box to get
arguments. See “Model Specific C Prototypes View”.

1-215

1 Alphabetical List

See Also

Topics
“Control Generation of Function Prototypes”

1-216

NumCalls

NumCalls

Total number of calls to profiled code section

Syntax

TotalNumCalls = NthSectionProfile _NumCalls

Description

TotalNumCalls = NthSectionProfile_NumCalls returns the total number of calls
to the profiled code section over the entire simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TotalNumCalls

Total number of calls

See Also

Sections | TimerTicksPerSecond | display | report | Name |

Number | MaximumExecutionTimeCal INum | MaximumSelfTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

1-217

1 Alphabetical List

“Analyze Code Execution Data”

Introduced in R2012b

1-218

NumCalls

NumCalls

Total number of calls to profiled code section

Syntax

TotalNumCalls = NthSectionProfile _NumCalls

Description

TotalNumCalls = NthSectionProfile_NumCalls returns the total number of calls
to the profiled code section over the entire execution.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TotalNumCalls

Total number of calls

See Also

getCoderExecutionProfile | TimerTicksPerSecond |
MaximumSelfTimeCal INum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Name | Number

| MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

1-219

1 Alphabetical List

Introduced in R2012b

1-220

getOutputData

getOutputData

Class: cgv.CGV
Package: cgv

Get output data

Syntax

out = cgvObj.getOutputData(InputIndex)

Description

out = cgvObj.getOutputData(InputIndex) is the method that you use to retrieve
the output data that the object creates during execution of the model. out is the output
data that the object returns. cgvObj is a handle to a cgv.CGV object. InputIndex is a
unique numeric identifier that specifies which output data to retrieve. The InputIndex
is associated with specific input data.

See Also

Topics
“Verify Numerical Equivalence with CGV”

1-221

1 Alphabetical List

1-222

getPreview

Class: RTW.ModelSpecificCPrototype
Package: RTW

Get model-specific C function prototype code preview

Syntax

preview = getPreview(obj, fcnType)

Description

preview = getPreview(obj, fcnType) gets the model-specific C function prototype
code preview.

Input Arguments

obj Handle to a model-specific C prototype function
control object previously returned by obj =
RTW.getFunctionSpecification(modelName).

fenType Optional. Character vector specifying which function to preview.
Valid options are "step” and "init". If fcnType is not
specified, previews the step function.

Output Arguments

preview Character vector specifying the function prototype for the step or
initialization function.

Alternatives

Use the Step function preview subpane in the Model Interface dialog box to preview
how your step function prototype is interpreted in generated code. See “Model Specific C
Prototypes View”.

getPreview

See Also

Topics
“Control Generation of Function Prototypes”

1-223

1 Alphabetical List

getReportData

Class: cgv.Config
Package: cgv

Return results of comparing configuration parameter values

Syntax

rpt_data = cfgObj .getReportData()

Description
rpt _data = cfgObj.getReportData() compares the original configuration
parameter values with the values that the object recommends. cfg0Obj is a handle to a

cgv.Config object. Returns a cell array of character vectors with the model, parameter,
previous value, and recommended or new value.

See Also

Topics
“Verify Numerical Equivalence with CGV”

1-224

getSavedSignals

getSavedSignals

Class: cgv.CGV
Package: cgv

Display list of signal names to command line

Syntax

signal 1list = cgvObj.getSavedSignals(simulation_data)

Description

signal 1ist = cgvObj.getSavedSignals(simulation data) returns a cell
array, signal 1ist, of the output signal names of the data elements from the input
data set, simulation_data. simulation_data is the output data stored in the CGV
object, cgvObj, when you execute the model.

Tips

+ After executing your model, use the cgv.CGV.getOutputData function to get the
output data used as the input argument to the cgvObj .getSavedSignals function.

+ Use names from the output signal list at the command line or as input arguments
to other CGV functions, for example, cgv.CGV.createToleranceFile,
cgv.CGV.compare, and cgv.CGV.plot.

See Also

Topics
“Verify Numerical Equivalence with CGV”

1-225

1 Alphabetical List

1-226

Number

Get number that uniquely identifies profiled code section

Syntax

SectionNumber = NthSectionProfile .Number

Description

SectionNumber = NthSectionProfile _Number returns a number that uniquely
identifies the profiled code section, for example, in the code execution profiling report.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

SectionNumber

Number of profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name |

NumCalls | MaximumExecutionTimeCal INum | MaximumSelfTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Number

“Analyze Code Execution Data”

Introduced in R2012b

1-227

1 Alphabetical List

1-228

Number

Get number that uniquely identifies profiled code section

Syntax

SectionNumber = NthSectionProfile .Number

Description

SectionNumber = NthSectionProfile _Number returns a number that uniquely
identifies the profiled code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

SectionNumber

Number of profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Name |
MaximumExecutionTimeCal INum | ExecutionTimelnTicks
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Number

Introduced in R2012b

1-229

1 Alphabetical List

pil_block_replace

Replace block in model with block from another model

Syntax

pil_block replace(sourceModelBlock, destinationModelBlock)
pil_block_replace(sourceModelBlock, destinationModelBlock,
"isvisible®)

Description

pil_block_replace(sourceModelBlock, destinationModelBlock) replaces
a block in the destination model with a block from the source model. To preserve the
original block from the destination model, in the source model, the function replaces
sourceModelBlock with destinationModelBlock

pil_block_replace(sourceModelBlock, destinationModelBlock,
"isvisible") highlights the replaced block in the destination model.

Examples

Replace Destination Block with Source Block
This example shows how to replace a block in a model with a block from another model.

Create a destination model that contains an Outport block, destinationBlock.
new_system("destModel ™)

open_system("destModel ") ;
add_block("simulink/Sinks/0Outl®, "destModel/destinationBlock™)

Create a source model that contains a Scope block, sourceBlock.
new_system("srcModel ™)

open_system("srcModel ") ;
add_block("simulink/Sinks/Scope®, "srcModel/sourceBlock™)

Replace the Outport block in the destination model with the Scope block from the source
model.

1-230

pil_block_replace

pil_block_replace("srcModel/sourceBlock”, "destModel/destinationBlock”, "isvisible™)

. “Cross-Release Code Integration”

Input Arguments

sourceModelBlock — Source block
character vector

Full path to the replacement block in the source model.

Example: 'srcModel/sourceBlock’

destinationModelBlock — Destination block
character vector

Full path to the block in the destination model, which the source block replaces.
Example: 'destModel/destinationBlock’

See Also

Topics
“Cross-Release Code Integration”

Introduced in R2006b

1-231

1 Alphabetical List

1-232

piltest

Verify custom target connectivity configuration for PIL simulation

Syntax

piltest(config)
piltest(config, "ConfigParams” ,additionalParameterList)
piltest(config, "TestPoint" ,testName)

Description

piltest(config) runs a suite of tests that verify your custom processor-in-the-

loop (PIL) target connectivity configuration. In the tests, the function runs various
normal, software-in-the-loop (SIL), and PIL simulations. The function compares results
and produces errors if it detects differences between simulation modes. For the PIL
simulations, the function extracts these parameters from config:

+ SystemTargetFile
* TargetHWDeviceType
* Toolchain

In the current working folder, the function creates the pi ltest folder, which contains
subfolders with test results.

piltest(config, "ConfigParams” ,additionalParameterList) extracts
additional parameters from config for the PIL simulation.

piltest(config, "TestPoint",testName) runs a specific test from the test suite.

Examples

Verify Target Connectivity Configuration with pi I test

This example uses pi ltest to verify a target connectivity configuration for PIL
simulations on your development computer.

Create a target connectivity implementation in your current working folder.

piltest

% Make a local copy of the connectivity classes.
src_dir = ...
fullfile(matlabroot, "toolbox", "coder”, "simulinkcoder™, ...
"+coder”, "+mypil~);
if exist(fullfile(".", "+mypil~), "dir")
rmdir("+mypil”®,"s")
end
mkdir +mypil
copyfile(fullfile(src_dir, "Launcher.m®), “+mypil®);
copyfile(fullfile(src_dir, "TargetApplicationFramework.m®), “+mypil®);
copyfile(fullfile(src_dir, "ConnectivityConfig.m®), “+mypil®);

% Make the copied files writable.
fileattrib(fullfile(C+mypil™, "*"),"+w");

% Update the package name to reflect the new location of the files.
coder _mypil_Utils_UpdateClassName(.- .

" _/+mypil/ConnectivityConfig.m®, ...

"coder _mypil®,._.

"mypilT);

Register a target connectivity configuration using an sl_customization.m file. This
example uses a supplied file.

sl_customization_path = fullfile(matlabroot, ...

"toolbox", ...

rew", ...

"rtwdemos”®, . ..

"pil_demo");
addpath(sl_customization_path);
sl_refresh_customizations;

Specify the PIL simulation mode for the model.

close_system("rtwdemo_sil_topmodel*)

open_system("rtwdemo_sil_topmodel ™)

set_param(“rtwdemo_sil_topmodel®, "SimulationMode®, . ..
"processor-in-the-loop (pil)~);

Specify the manufacturer and test hardware type. For example, PIL simulation on a 64-
bit Windows® development computer requires:

set_param(“rtwdemo_sil_topmodel*®, "TargetHWDeviceType”, ...
"Intel->x86-64 (Windows64)");
set_param(“rtwdemo_sil_topmodel*, "ProdLongLongMode”® ,true);

1-233

1 Alphabetical List

1-234

Run piltest.
piltest("rtwdemo_sil_topmodel®, “ConfigParam®, {"ProdLongLongMode®})

. “Create PIL Target Connectivity Configuration”
. “SIL and PIL Simulations”

Input Arguments

config — Configuration set, configuration reference, or model
Simulink.ConfigSet|Simulink.ConfigSetRef|character vector

A configuration set, configuration set reference, or Simulink model.

additionalParameterList — Additional parameters
cell array of character vectors

Extract additional parameters from config for PIL simulation.

testName — Specific test

"all® (default) | "verifyPILBlock" | "verifyModelBlock" | "verifyTopModel "
| "verifyExecutionOnTarget® | "verifyTopModelSILPILSwitching”® |
"veriftyModelBlockSILPILSwitching*

+ "verifyPILBlock®" — For normal mode results, run a simulation of a Simulink
model with a subsystem. For PIL results, replace the subsystem with a PIL block and
rerun the simulation. The function compares normal and PIL mode results. If the
function detects differences, it produces an error.

+ "verifyModelBlock™ — For normal mode results, run simulations of a Simulink
model with a Model block in normal mode.

For PIL mode results, run simulation loops with the Model block in PIL. mode. The
function varies these settings:

Model block parameter Code interface — Set to Top model (standalone code
interface) or Model reference.

+ Configuration Parameters > Code Generation > Language — Set to Cor C
++. For the C++ case, the function sets Code Generation > Interface > Code
interface packaging to C++ class.

piltest

The function compares normal and PIL mode results. If the function detects
differences, it produces an error.

+ "verifyTopModel " — Run simulations of a Simulink top-model in normal and PIL
modes. The function compares normal and PIL mode results. If the function detects
differences, it produces an error.

+ "verifyExecutionOnTarget®™ — Run simulations of a Simulink model with a
Model block in normal and PIL modes, using standalone and model reference code
interfaces. For PIL mode, the function introduces a deliberate mismatch. The function
compares normal and PIL mode results. If it does not detect the deliberate mismatch,
it produces an error.

+ "verifyTopModelSILPILSwitching®” — For a Simulink top model:

+ Verify that production code is not regenerated when the function switches
between SIL and PIL simulation modes. The function compares timestamps of the
production code used in each mode.

+ Compares results from SIL and PIL mode simulations to results from a normal
mode simulation.

If the function detects differences in timestamps or simulation results, it produces an
error.

+ "verifyModelBlockSILPILSwitching®™ — For a Simulink Model block:

Verify that production code is not regenerated when the Model block simulation
mode switches between SIL and PIL modes. The function compares timestamps of
the production code used in each mode.

Run simulation loops with the Model block in SIL and PIL modes. The function
varies the Code interface Model block parameter, setting this parameter to Top
model or Model reference. The function compares results from SIL and PIL
mode simulations to results from a normal mode simulation.

If the function detects differences in timestamps or simulation results, it produces an
error.

+ "all®™ — Run all tests from the test suite.

1-235

1 Alphabetical List

1-236

See Also

See Also
Simulink.ConfigSet | Simulink.ConfigSetRef

Topics
“Create PIL Target Connectivity Configuration”
“SIL and PIL Simulations”

Introduced in R2016b

piltest

piltest

Verify custom target connectivity configuration for PIL execution

Syntax

piltest(config)
piltest(config, "ConfigParams” ,additionalParameterList)
piltest(config, "TestPoint" ,testName)

Description

piltest(config) runs tests that verify your custom processor-in-the-loop (PIL) target
connectivity configuration. In the tests, the function runs the MATLAB function and
performs PIL executions. The function compares results and produces errors if it detects
differences. For PIL executions, the function extracts the TargetHWDeviceType and
Toolchain settings from config.

In the current working folder, the function creates the piltest folder, which contains
subfolders with test results.

piltest(config, "ConfigParams” ,additionalParameterList) extracts
additional settings from config for the PIL execution.

piltest(config, "TestPoint", testName) runs the specified test.

Examples

Verify Target Connectivity Configuration with pi I test

This example shows how you can use pi ltest to verify a target connectivity
configuration for PIL execution.

Create a code generation configuration object for C/C++ static library generation.

cfg = coder.config("lib");

1-237

1 Alphabetical List

Create hardware configuration object, specify manufacturer and test hardware type, and
assign handle to code generation object.

hwimpl = coder.Hardwarelmplementation;
hwimpl .TargetHWDeviceType = "Atmel->AVR";
cfg.Hardwarelmplementation = hwimpl;
Specify the toolchain for code generation.
cfg.Toolchain = "AVR tools for Arduino”;
Run the function.

piltest(cfg)

. “Create PIL Target Connectivity Configuration”

. “PIL Execution of Code Generated for a Kalman Estimator”

Input Arguments

config — Configuration object
coder .EmbeddedCodeConfig

A configuration object that specifies code generation parameters.

additionalParameterList — Additional parameters
cell array of character vectors

Extract additional parameters from config for PIL execution.

testName — Specific test
"all” (default) | "verifyPILConfig"

+ "verifyPILConfig" — For a given set of input values, the function:

Runs a MATLAB function on your development computer.

Performs PIL executions of generated MATLAB code on your target hardware with
config.TargetLang set to "C" and "C++".

The function compares MATLAB function and PIL results. If the function detects
differences, it produces an error.

1-238

piltest

"all®™ — Run all tests.

See Also

See Also
coder.EmbeddedCodeConfig

Topics

“Create PIL Target Connectivity Configuration”
“PIL Execution of Code Generated for a Kalman Estimator”

Introduced in R2016b

1-239

1 Alphabetical List

Sections

Get array of coder .profile.ExecutionTimeSection objects for profiled code sections

Syntax

NthSectionProfile = myExecutionProfile.Sections(N)
numberOfSections = length(myExecutionProfile.Sections)

Description

NthSectionProfile = myExecutionProfile.Sections(N) returns an
coder.profile._ExecutionTimeSection object for the Nth profiled code section.

numberOfSections = length(myExecutionProfile.Sections) returns the
number of code sections for which profile data is available.

myExecutionProfile is a workspace variable generated by a simulation.

Input Arguments
N

Index of code section for which profile data is required

Output Arguments
NthSectionProfile

Object that contains profile information about the code section. You can use the following
coder.profile.ExecutionTimeSection methods to retrieve the information:

+ Name — Name of the code section.
* Number — Number of the code section.
+ NumCal Is — Number of calls to the code section.

1-240

Sections

+ TotalExecutionTimelnTicks — Total number of timer ticks recorded for the code
section over the entire simulation.

* TurnaroundTimelnTicks — Time between start and finish of the code section, in
timer ticks.

+ TotalTurnaroundTimelnTicks — Total number of timer ticks between start and
finish of the code section, over the entire simulation.

+ MaximumExecutionTimelnTicks — Maximum number of timer ticks for a single
invocation of the code section.

+ MaximumExecutionTimeCal INum — Number of call associated with the maximum
number of timer ticks recorded for a single invocation of the code section.

+ MaximumTurnaroundTimelnTicks — Maximum number of ticks between start and
finish for a single invocation.

+ MaximumTurnaroundTimeCal INum — Number of call associated with the maximum
time between start and finish of a single invocation.

+ MaximumSelfTimelnTicks — Maximum self time, in timer ticks.
+ SelfTimelnTicks — Self time for the code section, in timer ticks.

+ TotalSelfTimelnTicks — Total self time for the code section, over the entire
simulation.

+ MaximumSelfTimeCal INum — Call associated with maximum self time.
+ ExecutionTimelnTicks — Vector of execution times.

numberOfSections

Number of code sections with profile data

See Also

TimerTicksPerSecond | display | report

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-241

1 Alphabetical List

1-242

Sections

Get array of coder .profile.ExecutionTimeSection objects for profiled code sections

Syntax

NthSectionProfile = myExecutionProfile.Sections(N)
numberOfSections = length(myExecutionProfile.Sections)

Description

NthSectionProfile = myExecutionProfile.Sections(N) returns an
coder.profile._ExecutionTimeSection object for the Nth profiled code section.

numberOfSections = length(myExecutionProfile.Sections) returns the
number of code sections for which profile data is available.

myExecutionProfile is a workspace variable that you create using
getCoderExecutionProfile.

Input Arguments
N

Index of code section for which profile data is required

Output Arguments

NthSectionProfile

Object that contains profile information about the code section. You can use the following
coder _profile_ExecutionTimeSection methods to retrieve the information:

+ Name — Name of the code section.
* Number — Number of the code section.

Sections

* NumCalls — Number of calls to the code section.

+ TotalExecutionTimelnTicks — Total number of timer ticks recorded for the code
section over the entire execution.

* TurnaroundTimelnTicks — Time between start and finish of the code section, in
timer ticks.

+ TotalTurnaroundTimelnTicks — Total number of timer ticks between start and
finish of the code section, over the entire execution.

+ MaximumExecutionTimelInTicks — Maximum number of timer ticks for a single
invocation of the code section.

+ MaximumExecutionTimeCal INum — Number of call associated with the maximum
number of timer ticks recorded for a single invocation of the code section.

+ MaximumTurnaroundTimelnTicks — Maximum number of ticks between start and
finish for a single invocation.

+ MaximumTurnaroundTimeCal INum — Number of call associated with the maximum
time between start and finish of a single invocation.

+ MaximumSelfTimelInTicks — Maximum self time, in timer ticks.
+ SelfTimelnTicks — Self time for the code section, in timer ticks.

+ TotalSelfTimelnTicks — Total self time for the code section, over the entire
execution.

+ MaximumSelfTimeCal INum — Call associated with maximum self time.
+ ExecutionTimelnTicks — Vector of execution times.

numberOfSections

Number of code sections with profile data

See Also

getCoderExecutionProfile | TimerTicksPerSecond | report

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-243

1 Alphabetical List

1-244

sharedCodeUpdate

Add new shared code source files to existing shared code folder

Syntax

sharedCodeUpdate(sourceFolder ,destinationFolder)
sharedCodeUpdate(sourceFolder,destinationFolder,
"ExistingCodeSubfolder®, destinationSubfolder)

Description

sharedCodeUpdate(sourceFolder,destinationFolder) copies, for example,
shared utility files from sourceFolder to a subfolder in destinationFolder provided
that the files do not exist within destinationFolder. The function:

+ Identifies files in both folders that have identical names but different content. The
function does not overwrite these files in destinationFolder. In the Command
Window, you see a compare link for each file. To examine differences by using the
Comparison tool, click the link.

+ Lists sourceFolder files that the function intends to copy and seeks confirmation.
When you provide confirmation, the function copies the files to destinationFolder.
By default, the destination of the copied files is a subfolder that corresponds to the
release in which the files were created, for example, R2015a or R2015b.

sharedCodeUpdate (sourceFolder,destinationFolder,
"ExistingCodeSubfolder®, destinationSubfolder) copies files to the subfolder
that you specify.

Examples
Copy Shared Utility Files to Shared Code Folder

This example shows how to copy source files from a shared utilities folder to a shared
code folder.

sourceFolder = fullfile(pwd, "R2015bWork™, "slprj”, "ert"," sharedutils®);

sharedCodeUpdate

existingSharedCodeFolder = fullfile(pwd, "SharedUtilCode”);
sharedCodeUpdate(sourceFolder, existingSharedCodeFolder);

Copy Shared Utility Files to Subfolder

This example shows how to copy source files from a shared utilities folder to a specified
subfolder in the shared code folder.

sourceFolder = fullfile(pwd, "R2015bWork*®, "slprj”,"ert”,” sharedutils™);
existingSharedCodeFolder = fullfile(pwd, "SharedUtilCode?”);
destinationSubfolder = "mySub”

sharedCodeUpdate(sourceFolder, existingSharedCodeFolder,...
"ExistingCodeSubfolder®, destinationSubfolder);

. “Cross-Release Shared Utility Code Reuse”

. “Cross-Release Code Integration”

Input Arguments

sourceFolder — Source folder
Character vector

File path to folder with shared code files that you want to add to existing shared code
folder.

destinationFolder — Existing shared code folder
character vector

File path to existing shared code folder.

destinationSubfolder — Destination subfolder
chal‘actel‘ vector

Destination subfolder in existing shared code folder.

See Also

See Also

crossReleaselmport | crossReleaseExport

1-245

1 Alphabetical List

Topics
“Cross-Release Shared Utility Code Reuse”
“Cross-Release Code Integration”

Introduced in R2016b

1-246

getStatus

getStatus

Class: cgv.CGV
Package: cgv

Return execution status

Syntax

status
status

cgvObj .getStatus()
cgvObj .getStatus(inputName)

Description

status = cgvObj.getStatus() returns the execution status of cgvObj. cgvObj is a
handle to a cgv.CGV object.

status = cgvObj.getStatus(inputName) returns the status of a single execution
for inputName.

Input Arguments

inputName

inputName is a unique numeric or character identifier associated with input data, which
is added to the cgv.CGV object using cgv.CGV.addInputData.

Output Arguments

status

If inputName is provided, status is the result of the execution of input data associated
with inputName.

Valve Description

none Execution has not run.

1-247

1 Alphabetical List

Valve Description
pending Execution is currently running.
completed Execution ran to completion without errors

and output data is available.

passed Baseline data was provided. Execution
ran to completion and comparison to the
baseline data returned no differences.

error Execution produced an error.

failed Baseline data was provided. Execution
ran to completion and comparison to the
baseline data returned a difference.

If inputName is not provided, the following pseudocode describes the return status:

it (all executions return "passed®)

status = "passed”

else if (all executions return "passed® or "completed®)
status = "completed”

else if (an execution returns “error”)

status = “error”

else if (an execution returns "failed®)

status = "failed”

else it (an execution returns "none" or "pending-”
status = "none”

See Also

cgv.CGV.addInputData | cgv.CGV.run | cgv.CGV.addBaseline

Topics
“Verify Numerical Equivalence with CGV”

1-248

getStepMethodName

getStepMethodName

Class: RTW.ModelCPPClass
Package: RTW

Get step method name from model-specific C++ class interface

Syntax

fcnName = getStepMethodName(obj)

Description

fcnName = getStepMethodName(obj) gets the name of the step method described by
the specified model-specific C++ class interface.

Input Arguments

obj Handle to a model-specific C++ class interface control
object, such as a handle previously returned by obj =
RTW.getClasslInterfaceSpecification (modelName).

Output Arguments

fcnName A character vector specifying the name of the step method
described by the specified model-specific C++ class interface.

Alternatives

To view the step method name in the Simulink Configuration Parameters graphical
user interface, go to the Interface pane and click the Configure C++ Class Interface
button. This button launches the Configure C++ class interface dialog box, which

1-249

1 Alphabetical List

displays the step method name and allows you to display and configure the step method
for your model class. For more information, see “Configure Step Method for Your Model
Class”.

See Also

Topics

“Customize C++ Class Interfaces Programmatically”
“Configure Step Method for Model Class”

“Control Generation of C++ Class Interfaces”

1-250

gefTflArgFromString

getTHArgFromString

Create code replacement argument based on specified name and built-in data type

Syntax

arg = getTflArgFromString(hTable, name, datatype)

Input Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW.TfITable.

name

Character vector specifying the name to use for a code replacement argument, for
example, "y1°~.
datatype

Character vector specifying a built-in data type or a fixed-point data type to use for
the code replacement argument.

+ Valid built-in data types are "integer”, "int8", "intl6", "int32", "long",
"long_long", "uinteger” , "uint8", "uintl6”, "uint32", "ulong”,
“ulong_long", "single”, "double®, "boolean”, and "logical".

* You can specify fixed-point data types using the Fixdt function from Fixed-Point
Designer™ software; for example, "fixdt(1,16,2)".

Output Arguments

Handle to the created code replacement argument, which can be specified to the
addConceptualArg function.

Description

The getTFIArgFromString function creates a code replacement argument that is based
on a specified name and built-in or fixed-point data type.

1-251

1 Alphabetical List

The 10Type property of the created argument defaults to *RTW_10_INPUT",
indicating an input argument. For an output argument, change the 10Type value to
"RTW_10_OUTPUT" by directly assigning the argument property.

This function does not support matrices. To create a matrix argument, use the
argument class RTW. TFIArgMatrix as shown in “Small Matrix Operation to Processor
Code Replacement”, “Matrix Multiplication Operation to MathWorks BLAS Code
Replacement”, and “Matrix Multiplication Operation to ANSI/ISO C BLAS Code
Replacement”.

Examples

The following example uses getTFIArgFromString to create an intl6 output
argument named y1. The example then adds the argument as a conceptual argument for
a code replacement table entry.

hLib = RTW.TfITable;
op_entry = RTW.TFICOperationEntry;

arg = hLib.getTflArgFromString("yl®, "intl6");
arg.10Type = "RTW_IO_OUTPUT";
op_entry_addConceptualArg(arg);

See Also

addConceptualArg

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

Introduced in R2008a

1-252

getTADWorkFromString

getTADWorkFromString

Create code replacement DWork argument for semaphore entry based on specified name
and data type

Syntax

arg = getTflDWorkFromString(hTable, name, datatype)

Input Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW.TfITable.

name

Character vector specifying the name to use for the code replacement DWork
argument, for example, "d1”.

datatype

Character vector specifying a data type to use for the code replacement DWork
argument. Currently, you must specify "void*".

Output Arguments

Handle to the created code replacement argument, which can be specified to the
addDWorkArg function. See the example below.
Description

The getTFIDWorkFromString function creates a code replacement DWork argument,
based on a specified name and data type, for a semaphore entry in a code replacement
table.

1-253

1 Alphabetical List

Examples

In the following example, getTFIDworkFromString is used to create a void* argument
named d1. The argument is then added as a DWork argument for a semaphore entry in a
code replacement table.

hLib = RTW.TFflTable;
sem_entry = RTW.TFICSemaphoreEntry;

% DWork Arg

arg = hLib.getTfIDWorkFromString(®dl1", "void*");
sem_entry.addDWorkArg(arg);

hLib.addEntry(sem_entry);

See Also

addDWorkArg

Topics
“Semaphore and Mutex Function Replacement
“Define Code Replacement Mappings”

”

Introduced in R2013a

1-254

coder.hardware

coder.hardware

Create hardware configuration object for PIL execution

Syntax

hw = coder.hardware(name)
coder _hardware()

Description

hw = coder.hardware(name) returns the configuration object of the hardware
name that you select. You can use this object as the hardware configuration object for a
Processor-in-the-Loop (PIL) execution with MATLAB Coder.

coder _hardware() returns a cell array of names of hardware that the installed
hardware support packages support. If hardware support is not installed, it returns an
empty cell array.

The support packages that support PIL execution by using the coder.hardware class are:

* Embedded Coder Support Package for BeagleBone Black Hardware
* Embedded Coder Support Package for ARM® Cortex®-A Processors
* Embedded Coder Support Package for Altera® SoC Platform

* Embedded Coder Support Package for Xilinx® Zyng®-7000 Platform

You must install one of these support packages. For an example of the full PIL execution
with each target hardware, see the "Processor-in-the-Loop Verification of MATLAB
Functions" example in the support packages’ documentation.

Examples

Create a Hardware Configuration Object for BeagleBone Hardware

hw = coder.hardware("BeagleBone Black™);

1-255

1 Alphabetical List

disp(hw)
Hardware with properties:

Name: "BeagleBone Black*®
CPUClockRate: 1000
Password: "root”
Username: "admin®
DeviceAddress: "192.168.1.10"

View Supported Hardware List

coder _hardware()

ans =
"ARM Cortex-A9 (QEMU)* "BeagleBone Black®
Set Hardware Configuration to Coder Configuration Object

Create hardware configuration object and set properties.

hw = coder.hardware("BeagleBone Black™);
hw_DeviceAddress = "192.168.1.100"
hw_.UserName = "admin”;

hw.Password = "password”;

disp(hw)

Hardware with properties:

Name: "BeagleBone Black®
CPUClockRate: 1000
DeviceAddress: "192.168.1.100"
Username: “admin®
Password: “password-®

Set hardware configuration object to coder configuration object.
cfg = coder.config("lib","ecoder”,true);

cfg.VerificationMode = "PIL";
cfg.Hardware = hw;

. “PIL Execution with ARM Cortex-A at the Command Line”
. “PIL Execution with ARM Cortex-A by Using the MATLAB Coder App”

1-256

coder.hardware

Input Arguments

name — Name of target hardware
character vector | "BeagleBone Black® | "ARM Cortex-A9 (QEMU)*"

Name of target hardware, specified as a character vector. You can get the names of
the installed hardware support packages by calling coder .hardware() with no input
arguments.

Example: "BeagleBone Black*®

Data Types: char

Output Arguments

hw — Hardware configuration object
object

Hardware configuration object used for the code generation configuration class.

See Also

See Also

Functions
codegen | coder.config

Classes
coder.hardware

Topics
“PIL Execution with ARM Cortex-A at the Command Line”
“PIL Execution with ARM Cortex-A by Using the MATLAB Coder App”

Introduced in R2015b

1-257

1 Alphabetical List

1-258

coder.Hardware class

Package: coder

codegen configuration object that specifies hardware parameters for PIL execution

Description

coder .Hardware is a class that defines the properties of the target hardware for a
Processor-in-the-Loop (PIL) execution with MATLAB Coder. Each target hardware has a
CPUClockRate, Name, and other dynamic properties specific to their hardware.

The support packages that support Processor-in-the-Loop (PIL) execution by using the
coder _Hardware class are:

* Embedded Coder Support Package for BeagleBone Black Hardware

* Embedded Coder Support Package for ARM Cortex-A Processors

* Embedded Coder Support Package for Altera SoC Platform

* Embedded Coder Support Package for Xilinx Zynq-7000 Platform

You must install one of these support packages. For an example of the full PIL execution

with each target hardware, see the "Processor-in-the-Loop Verification of MATLAB
Functions" example in the support packages’ documentation.

Construction
hw = coder .hardware(name) returns the configuration object for the target hardware

name. You can use this object as the hardware configuration object for PIL execution with
MATLAB Coder.

Input Arguments

name — Name of target hardware
character vector | "BeagleBone Black®™ | "ARM Cortex-A9 (QEMU)*

coder.Hardware class

Name of target hardware, specified as a character vector. You can get the names of

the installed hardware support packages by calling coder .hardware() with no input

arguments.
Example: "BeagleBone Black*®

Data Types: char

Properties

CPUClockRate — Clock rate of target hardware
100 (default) | scalar

Clock rate of target hardware, stored as a scalar.

Data Types: double

Name — Name of target hardware
character vector

Name of target hardware, stored as a character vector. This name matches the
input name. You can get the current installed hardware support packages by calling
coder .hardware() with no input arguments.

Example: "BeagleBone Black*®

Data Types: char

Copy Semantics

Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Create a Hardware Configuration Object for ARM Cortex-A9 Hardware

hw = coder.hardware("ARM Cortex-A9 (QEMU)");
disp(hw)

Hardware with properties:

1-259

1 Alphabetical List

1-260

Name: “ARM Cortex-A9 (QEMU)*
CPUClockRate: 1000

Set Hardware Configuration to Coder Configuration Object

Dynamic properties for device address, user name, and password need to be specified for
the BeagleBone Black.

Create hardware configuration object and set properties.

hw = coder.hardware("BeagleBone Black™);
hw.DeviceAddress = "192.168.1.100"
hw.UserName = "admin®;

hw.Password = “password”;

disp(hw)

Hardware with properties:

Name: "BeagleBone Black®
CPUCIockRate: 1000
DeviceAddress: "192.168.1.100°
Username: “"admin”®
Password: "password*®

Set hardware configuration object to coder configuration object.

cfg = coder.config("lib","ecoder”,true);
cfg.VerificationMode = "PIL";
cfg.Hardware = hw;

. “PIL Execution with ARM Cortex-A at the Command Line”
. “PIL Execution with ARM Cortex-A by Using the MATLAB Coder App”

See Also

See Also

codegen | coder.config | coder.hardware

Topics
“PIL Execution with ARM Cortex-A at the Command Line”

coder.Hardware class

“PIL Execution with ARM Cortex-A by Using the MATLAB Coder App”

Introduced in R2015b

1-261

1 Alphabetical List

1-262

RTW.TfIBlasEntryGenerator

Create code replacement table entry for a BLAS operation

Syntax

obj = RTW.TFIBlasEntryGenerator

Description

obj = RTW.TFIBlasEntryGenerator creates a handle, 0bj, to a code replacement
table entry for a BLAS operator. The entry maps a conceptual representation of an
operator to an implementation (replacement) representation.

Output Arguments
obj Handle to code replacement table entry for a BLAS operator.
Examples

Create a code replacement table entry for a BLAS operator, hEnt.

hEnt = RTW.TFIBlasEntryGenerator;

See Also

RTW_TFICBlasEntryGenerator | RTW.TFICOperationEntry | RTW.TflTable |
“Code You Can Replace From Simulink Models”

Topics

“Define Code Replacement Mappings”

“Matrix Multiplication Operation to MathWorks BLAS Code Replacement”
“Code You Can Replace from MATLAB Code”

RTW.TfBlasEntryGenerator

“Code You Can Replace From Simulink Models”

1-263

1 Alphabetical List

1-264

RTW.TfICBlasEntryGenerator

Create code replacement table entry for a CBLAS operation

Syntax

obj = RTW.TFICBlasEntryGenerator

Description

obj = RTW.TFICBlasEntryGenerator creates a handle, 0bj, to a code replacement
table entry for a CBLAS operator. The entry maps a conceptual representation of an
operator to an implementation (replacement) representation.

Output Arguments
obj Handle to code replacement table entry for a CBLAS operator.
Examples

Create a code replacement table entry for a CBLAS operator, hEnt.

hEnt = RTW.TFICBlasEntryGenerator;

See Also

RTW._TFIBlasEntryGenerator | RTW.TFICOperationEntry | RTW.TFlTable

Topics

“Define Code Replacement Mappings”

“Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement”
“Code You Can Replace from MATLAB Code”

“Code You Can Replace From Simulink Models”

RTW.THCFunctionEntry

RTW.TfICFunctionEntry

Create code replacement table entry for a function

Syntax

obj = RTW.TFICFunctionEntry

Description

obj = RTW.TFICFunctionEntry creates a handle, obj, to a code replacement table
entry for a function. The entry maps a conceptual representation of a function to an
implementation (replacement) representation.

Output Arguments
obj Handle to code replacement table entry for a function.
Examples

Create a code replacement table entry for a function, hEnt.

hEnt = RTW.TFICFunctionEntry;

See Also

RTW_TFICFunctionEntryML | | RTW.TfITable

Topics

“Define Code Replacement Mappings”
“Math Function Code Replacement”
“Memory Function Code Replacement”
“Nonfinite Function Code Replacement”

1-265

1 Alphabetical List

“Lookup Table Function Code Replacement”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-266

RTW.THCFunctionEntryML

RTW.TAICFunctionEntryML

Base class for custom code replacement table function entry

Syntax

RTW_TFICFunctionEntryML

Description

Derive a class from RTW. TFICFunctionEntryML to represent your custom function
entry.

Examples

“Customize Match and Replacement Process”

See Also

RTW.TFICFunctionEntry | RTW.TflTable

Topics

“Define Code Replacement Mappings”
“Customize Match and Replacement Process”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-267

1 Alphabetical List

1-268

RTW.TfICOperationEntry

Create code replacement table entry for an operator

Syntax

obj = RTW.TFICOperationEntry

Description

obj = RTW.TFICOperationEntry creates a handle, 0bj, to a code replacement table
entry for an operator. The entry maps a conceptual representation of an operator to an
implementation (replacement) representation.

Output Arguments
obj Handle to code replacement table entry for an operator.
Examples

Create a code replacement table entry for an operator, hEnt.

hEnt = RTW.TFICOperationEntry;

See Also

| | RTW.TFITable | RTW.TFICOperationEntryGenerator |
RTW_TFICOperationEntryGenerator_NetSlope | RTW.TFfICOperationEntryML

Topics

“Define Code Replacement Mappings”

“Scalar Operator Code Replacement”

“Addition and Subtraction Operator Code Replacement”

RTW.TACOperationEntry

“Small Matrix Operation to Processor Code Replacement”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-269

1 Alphabetical List

RTW.TfICOperationEntryGenerator

Create code replacement table entry for a fixed-point addition or subtraction operation

Syntax

obj = RTW.TFICOperationEntryGenerator

Description

obj = RTW.TFICOperationEntryGenerator creates a handle, 0bj, to a code
replacement table entry for a fixed-point addition or subtraction operation. The entry
maps a conceptual representation of an operator to an implementation (replacement)

representation.

Output Arguments

obj Handle to code replacement table entry for a fixed-point addition
or subtraction operation.

Examples

Create a code replacement table entry for a fixed-point addition or subtraction operation,
hEnt.

hEnt = RTW.TFICOperationEntryGenerator;

See Also

RTW.TFICOperationEntry | | RTW.TfITable |
RTW.TFICOperationEntryGenerator_NetSlope | RTW.TFICOperationEntryML

Topics
“Define Code Replacement Mappings”

1-270

RTW.THCOperationEntryGenerator

“Fixed-Point Operator Code Replacement”
“Binary-Point-Only Scaling Code Replacement”
“Slope Bias Scaling Code Replacement”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-271

1 Alphabetical List

1-272

RTW.TfICOperationEntryGenerator_NetSlope

Create code replacement table entry for a net slope fixed-point operation

Syntax

obj = RTW.TFICOperationEntryGenerator_ NetSlope

Description

obj = RTW.TFICOperationEntryGenerator_NetSlope creates a handle, 0bj,
to a code replacement table entry for a net slope fixed-point operation. The entry
maps a conceptual representation of an operator to an implementation (replacement)
representation.

Output Arguments

obj Handle to code replacement table entry for a net slope fixed-point
operation.

Examples

Create a code replacement table entry for a net slope fixed-point operation, hEnt.

hEnt = RTW.TFICOperationEntryGenerator_NetSlope;

See Also

RTW.TFICOperationEntry | RTW.TFICOperationEntryGenerator |
RTW._TFICOperationEntryML

Topics
“Define Code Replacement Mappings”

RTW.TACOperationEntryGenerator_NetSlope

“Fixed-Point Operator Code Replacement”

“Net Slope Scaling Code Replacement”

“Equal Slope and Zero Net Bias Code Replacement”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-273

1 Alphabetical List

1-274

RTW.THICOperationEntryML

Base class for custom code replacement table operator entry

Syntax

RTW_TFICOperationEntryML

Description

Derive a class from RTW. TFICOperationEntryML to represent your custom operator
entry.

Examples

“Customize Code Match and Replacement for Scalar Operations”

See Also

RTW.TFICOperationEntry | RTW.TflITable

Topics

“Define Code Replacement Mappings”
“Customize Match and Replacement Process”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

RTW.THCSemaphoreEntry

RTW.TflICSemaphoreEntry

Create code replacement table entry for a semaphore or mutex

Syntax

obj = RTW.TFICSemaphoreEntry

Description
obj = RTW.TFICSemaphoreEntry creates a handle, 0bj, to a code replacement

table entry for a semaphore or mutex. The entry maps a conceptual representation of a
semaphore or mutex to an implementation (replacement) representation.

Output Arguments

obj Handle to code replacement table entry for a semaphore or mutex.

Examples

Create a code replacement table entry for a semaphore or mutex, hEnt.

hEnt = RTW.TFICSemaphoreEntry;

See Also

Topics

“Define Code Replacement Mappings”
“Semaphore and Mutex Function Replacement”
“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-275

1 Alphabetical List

RTW.TflTable

Create code replacement table

Syntax

obj = RTW.TflITable

Description

obj = RTW.TFITable creates a handle, 0bj, to a code replacement table.

Output Arguments
obj Handle to code replacement table.
Examples

Create a code replacement table object, hTable.

hTable = RTW.TflTable;

See Also

Topics

“Define Code Replacement Mappings”

“Code You Can Replace from MATLAB Code”
“Code You Can Replace From Simulink Models”

1-276

Time

Time

Get simulation time for code section

Syntax

SimTime = NthSectionProfile.Time

Description

SimTime = NthSectionProfile.Time returns a simulation time vector that
corresponds to the execution time measurements for the code section.

Examples

Get Simulation Time for Code Section

Run a simulation with a model that is configured to generate a workspace variable with
execution time measurements.

rtwdemo_sil_topmodel ;
set_param(“rtwdemo_sil_topmodel®, ...
"CodeExecutionProfiling”,
set_param(“rtwdemo_sil_topmodel”®, ...
*SimulationMode®, “software-in-the-loop (SIL)");
set_param(“rtwdemo_sil_topmodel”®, . ..
"CodeProfilinglnstrumentation®, “on®);
set_param(“rtwdemo_sil_topmodel®, . ..
"CodeProfilingSaveOptions®, “AllData");
sim("rtwdemo_sil_topmodel™);
The simulation generates the workspace variable executionProfile (default).

on%);

At the end of the simulation, get profile for the seventh code section.

seventhSectionProfile = executionProfile.Sections(7);

Get vector representing simulation time for code section.

1-277

1 Alphabetical List

1-278

simulationTimeVector = seventhSectionProfile.Time;

Input Arguments

NthSectionProfile — coder.profile._ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property Sections.

Output Arguments

SimTime — Simulation time
double

Simulation time, in seconds, for section of code. Returned as a vector.

See Also

See Also

ExecutionTimelnSeconds | ExecutionTimelnTicks | Sections

Topics
“Code Execution Profiling with SIL and PIL”
“Analyze Code Execution Data”

Introduced in R2013a

Time

Time

Time over which code section execution time measurements are made

Syntax

Time = NthSectionProfile.Time

Description

Time = NthSectionProfile.Time returns a time vector corresponding to the period
over which execution times are measured for the code section.

Examples

Get Time Vector for Code Section

Copy MATLAB code to your working folder.

src_dir = ...
fullfile(docroot, "toolbox", "coder”, "examples”, "kalman®);

copyfile(fullfile(src_dir,"kalman01.m"), ".")
copyfile(fullfile(src_dir,"testOl_ui.-m"), ".%)
copyfile(fullfile(src_dir, "plot_trajectory.m®), ".%)
copyfile(fullfile(src_dir, "position.mat®), ".%)

Set up and run a SIL execution.

config = coder.config(“lib");
config.GenerateReport = true;

config.VerificationMode = "SIL";
config.CodeExecutionProfiling = true;

codegen("-config®, config, "-args®, {zeros(2,1)}, “kalman01%);
coder _.runTest("testO01l ui”, [“kalmanOl_sil." mexext]);

At end of the execution, you see the following message.

1-279

1 Alphabetical List

To terminate execution: clear kalmanOl sil
Execution profiling report available after termination.

Click the link clear kalmanOl_sil.

Stopping SIL execution for “kalman0O1-
Execution profiling report: report(getCoderExecutionProfile("kalman01%))

Create a workspace variable that holds execution time data.

executionProfile=getCoderExecutionProfile("kalman01);

Get the profile for the second code section.

secondSectionProfile = executionProfile_Sections(2);

Get time vector for code section.

time = secondSectionProfile.Time;

Input Arguments

NthSectionProfile — coder._profile._ExecutionTimeSection
object

Object generated by the coder .profile.ExecutionTime property Sections.

Output Arguments

Time — Time
double

Time, in seconds, over which measurements are made for code section. Returned as a
vector.

See Also

See Also

ExecutionTimelnSeconds | ExecutionTimelnTicks |
getCoderExecutionProfile | Sections

1-280

Time

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2013a

1-281

1 Alphabetical List

1-282

timeline

Display invocations of code sections over execution timeline

Syntax

timeline(executionProfile)
timeline(executionProfile, "MaxResizelncrement®, numberOfPoints)

Description

timeline(executionProfile) displays invocations of each profiled code section over
the execution timeline.

timeline(executionProfile, "MaxResizelncrement®, numberOfPoints)
specifies the maximum increment by which you:

* Increase the number of displayed points when you click the zoom-out tool.

* Move along the timel ine plot when you sweep right or left with the pan tool.

Use this command when you want to review large timel ine plots quickly.

Examples

Display Code Section Invocations

Run a simulation with a model that is configured to generate a workspace variable with
execution-time measurements.

rtwdemo_sil_topmodel ;
set_param(“rtwdemo_sil_topmodel”®, . ..
"CodeExecutionProfiling”,
set_param(“rtwdemo_sil_topmodel”®, . ..
"SimulationMode®, “software-in-the-loop (SIL)");
set_param(“rtwdemo_sil_topmodel”®, . ..
"CodeProfilinglnstrumentation®,
set_param(“rtwdemo_sil_topmodel”®, . ..

on%);

on®);

"CodeProfilingSaveOptions”®,
sim("rtwdemo_sil_topmodel™);

"AllData");

The simulation generates the workspace variable executionProfile (default).

At the end of the simulation, open a code execution report.

report(executionProfile)

Under Profiled Sections of Code, in the Model column, expand all nodes.
You see profile information for eight code sections. For example, the task
rtwdemo_sil_topmodel_step and functions CounterTypeA and CounterTypeB.

2. Profiled Sections of Code

Model Maximum Average Maximum Self Average Self Calls
Execution Time Execution Time Time Time

[-1 rtwdemo sil topmodel initialize 257 257 111 111 1

[-]1 CounterTypeA 38 38 23 23 1

CounterTypeA 15 15 15 15 1

[-] CounterTypeB 109 109 94 94 1

CounterTypeB 15 15 15 15 1

[-1 riwdemo sil topmodel step [0.1 0] 265 121 147 61 101

CounterTypeA 94 36 94 36 101
CounterTypeB 37 24 37 24 100 EEHE

Display code section invocations.

timeline(executionProfile)

In the Execution Profile window, you see numbered horizontal bars that represent
invocations of the code sections.

rtwdemo_sil_topmodel_step [0.1 0]

rtwdemo_sil_topmodel_initialize

[t AE @AE gl
BICE RACE P1cE MACE BUCE B IGH DIGH |

Stat: 0

04 06 08 1 12 14
Time in seconds £
Range 142-08|]

1-283

1 Alphabetical List

rtwdemo_sil_topmodel_step [0.1 0]

rtwdemo_sil_topmodel_initialize -

1-284

For example, the blue bars show when the first section,
rtwdemo_sil_topmodel_initialize, is invoked

To see the first code section, in the first row of the Code Execution Profiling Report, click

the icon .

The Code Generation Report displays the function call.

PROFILE_START_TASK_SECTION(10);
i del aliz.

rtudemo_sil topmodel initi
PROFILE_END_TASK_SECTION(10):

To see what code sections are invoked over a specific time period, use the Start and
Range fields of the Execution Profile window. For example, in the Start and Range
fields, enter 6e-07 and 2e-07 respectively. Then press Enter.

! ! ! | ! ! 1 | ! |
6 6.2 6.4 66 68 7 7.2 74 76 78 8

Time in seconds d
Stat: 6e-07 Range 26-07] I

Between 0.6 ps and 0.8 ps, you see that the task rtwdemo_sil_topmodel_step (code
section 6) and the functions CounterTypeA (code section 7) and CounterTypeB (code
section 8) are invoked.

On the bottom right of the Execution Profile window, the indicator shows what portion of
the execution timeline is being displayed.

Input Arguments

executionProfile — coder.profile_ExecutionTime
object

When you run a simulation with code execution profiling, the software generates
executionProfile as a workspace variable.

timeline

numberOfPoints — Number of points
20 (default) | integer

Maximum increment for zoom-out and pan tools.

See Also

See Also

report

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Introduced in R2013b

1-285

1 Alphabetical List

1-286

TimerTicksPerSecond

Get and set number of timer ticks per second

Syntax

timerTicksPerSecVal = myExecutionProfile.TimerTicksPerSecond
myExecutionProfile._TimerTicksPerSecond = timerTicksPerSecVal

Description

timerTicksPerSecVal = myExecutionProfile._TimerTicksPerSecond returns
the number of timer ticks per second. For example, if the timer runs at 1 MHz, then the

number of ticks per second is 10°.

myExecutionProfile.TimerTicksPerSecond = timerTicksPerSecVal sets the
number of timer ticks per second. Use this method if the “Create PIL Target Connectivity
Configuration” does not specify this value.

myExecutionProfile is a workspace variable generated by a simulation.

Tip: You can calculate the execution time in seconds using the formula

ExecutionTimelnSecs = ExecutionTimelnTicks /| TimerTicksPerSecond .

Input Arguments

timerTicksPerSecVal

Number of timer ticks per second

Output Arguments

timerTicksPerSecVal

Number of timer ticks per second

TimerTicksPerSecond

See Also

Sections | report | Name | Number | display | NumCalls |
MaximumExecutionTimeCal INum | MaximumSe I fTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks |
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-287

1 Alphabetical List

1-288

TimerTicksPerSecond

Get and set number of timer ticks per second

Syntax

timerTicksPerSecVal = myExecutionProfile._TimerTicksPerSecond
myExecutionProfile.TimerTicksPerSecond = timerTicksPerSecVal

Description

timerTicksPerSecVal = myExecutionProfile._TimerTicksPerSecond returns
the number of timer ticks per second. For example, if the timer runs at 1 MHz, then the

number of ticks per second is 10°.

myExecutionProfile.TimerTicksPerSecond = timerTicksPerSecVal sets the
number of timer ticks per second. Use this method if the target connectivity configuration
does not specify this value.

myExecutionProfile is a workspace variable that you create using
getCoderExecutionProfile.

Tip: You can calculate the execution time in seconds using the formula

ExecutionTimelnSecs = ExecutionTimelnTicks / TimerTicksPerSecond .

Input Arguments

timerTicksPerSecVal

Number of timer ticks per second

Output Arguments

timerTicksPerSecVal

Number of timer ticks per second

TimerTicksPerSecond

See Also

getCoderExecutionProfile | NumCalls | MaximumSelfTimeCal INum

| TotalExecutionTimelnTicks | MaximumSelfTimelnTicks |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks | Sections | report
| Name | Number | MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics

“Generate Execution Time Profile”

“Analyze Execution Time Data”

“Create PIL Target Connectivity Configuration”

Introduced in R2012b

1-289

1 Alphabetical List

coder. MATLABCodeTemplate.getTokenValue

Class: coder. MATLABCodeTemplate
Package: coder

Get value of token

Syntax

tokenValue = getTokenValue(tokenName)

Description

tokenValue = getTokenValue(tokenName) returns the value of the specified token.

Input Arguments

tokenName
Name of token

Default: empty

Output Arguments

tokenValue — Token value
Character vector

The current value of tokenName, returned as a character vector.

Examples

Create a MATLABCodeTemplate object with the default template, then get the value for
a token.

1-290

coder. MATLABCodeTemplate.gefTokenValue

newObj = coder_MATLABCodeTemplate;

% Creates a MATLABCodeTemplate object from the default template

newObj -getCurrentTokens()

% Get list of current tokens

newObj .getTokenValue("MATLABCoderVersion®)
% Check value of a token

See Also

See Also

coder. MATLABCodeTemplate.setTokenValue |
coder. MATLABCodeTemplate.getCurrentTokens |
coder. MATLABCodeTemplate.emitSection

Topics
“Generate Custom File and Function Banners for C/C++ Code
“Code Generation Template Files for MATLAB Code”

9

1-291

1 Alphabetical List

1-292

halt

Halt program execution by processor

Syntax

halt(IDE 0Obj)
halt(IDE_Obj ,timeout)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

halt(IDE 0Obj) stops the program running on the processor. After you issue this
command, MATLAB waits for a response from the processor that the processor has
stopped. By default, the wait time is 10 seconds. If 10 seconds elapses before the response
arrives, MATLAB returns an error. In this syntax, the timeout period defaults to the
global timeout period specified in IDE_Obj. Use get(IDE_0bj) to determine the global
timeout period. However, the processor usually stops in spite of the error message.

To resume processing after you halt the processor, use run. Also, the
read(IDE _Obj,"pc™) function can determine the memory address where the processor
stopped after you use halt.

halt(IDE_Obj ,timeout) immediately stops program execution by the processor. After
the processor stops, halt returns to the host. timeout defines, in seconds, how long the
host waits for the processor to stop running. If the processor does not stop within the
specified timeout period, the routine returns with a timeout error.

halt

Examples

Use one of the provided example programs to show how halt works. Load and run one of
the example projects. At the MATLAB prompt, check whether the program is running on
the processor.

isrunning(IDE_Obj)
ans =
1

halt(IDE_Obj) % Stop the running application on the processor.
isrunning(IDE_Obj)

ans =

0

Issuing the halt stops the process on the processor. Checking in the IDE confirms that
the process has stopped.

See Also

isrunning | reset | run

Introduced in R2011a

1-293

1 Alphabetical List

info

Information about processor

Syntax

adf = info(IDE _0bj)
adf = info(IDE_0bj)
adf = info(rx)

adf = info(IDE_Obj)
adf = info(rx)

IDEs

This function supports the following IDEs:

Analog Devices VisualDSP++

Texas Instruments Code Composer Studio v3

Description

adf = info(IDE_0bj) returns debugger or processor properties associated with the
IDE handle object, IDE_Obj.

Using info with Multiprocessor Boards

For multiprocessor targets, the info method returns properties for each processor with
the array.

Examples

Using info with IDE_Obj, which is associated with 1 processor:

oinfo = info(IDE_0bj);

1-294

info

Using info with IDE_Obj, which is associated with 2 processors:

oinfo = Iinfo(IDE_Obj); % Returns a 1x2 array of infor struct

Using info with CCS IDE

adf = info(IDE_0bj) returns the property names and property values associated
with the processor accessed by IDE Obj. adf is a structure containing the following
information elements and values.

Structure Element Data Type Description
adf.procname Character Processor name as defined in the CCS setup utility. In
vector multiprocessor systems, this name reflects the specific

processor associated with IDE 0Obj.

adf.isbigendian Boolean Value describing the byte ordering used by the processor.
When the processor is big-endian, this value is 1. Little-
endian processors return O.

adf._family Integer Three-digit integer that identifies the processor family,
ranging from 000 to 999. For example, 320 for Texas
Instruments digital signal processors.

adf.subfamily Decimal Decimal representation of the hexadecimal identification
value that TT assigns to the processor to identify the
processor subfamily. IDs range from 0x000 to 0x3822.
Use dec2hex to convert the value in adf.subfamily to
standard notation. For example

dec2hex(adf.subfamily)

produces "67" when the processor is a member of the
67xx processor family.

adf.timeout Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. Functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses 10s as the default value.

adf = info(rx) returns info as a cell arraying containing the names of your open
RTDX channels.

1-295

1 Alphabetical List

Examples

On a PC with a simulator configured in CCS IDE, info returns the configuration for the
processor being simulated:

info(IDE_Obj)
ans =

procname: "CPU*
isbigendian: 0O
family: 320
subfamily: 103
timeout: 10

This example simulates the TMS320C62xx processor running in little-endian mode.
When you use CCS Setup Utility to change the processor from little-endian to big-endian,
info shows the change.

info(IDE_Obj)
ans =
procname: "CPU"
isbigendian: 1
family: 320

subfamily: 103
timeout: 10

If you have two open channels, chanl and chan2,
adf = info(rx)

returns

adf =

"chanl*

"chan2*

where adf is a cell array. You can dereference the entries in adf to manipulate the
channels. For example, you can close a channel by dereferencing the channel in adf in
the close function syntax.

close(rx.adf{1,1})

1-296

info

Using info with VisualDSP++ IDE

adf = info(IDE_O0bj) returns the property names and property values associated
with the processor accessed by IDE _0Obj. The adf variable is a structure containing the
following information elements and values.

Structure Element Data Type Description
adf_procname Character Processor name as defined in the CCS setup utility. In
vector multiprocessor systems, this name reflects the specific
processor associated with IDE Obj.
adf.proctype Character Character vector with the type of the DSP processor. The
vector type property is the processor type like "ADSP-21065L" or
"ADSP-2181".
adf.revision Character Character vector with the silicon revision string of the
vector processor.

adf = info(rx) returns info as a cell arraying containing the names of your open

RTDX channels.

Examples

When you have an adivdsp object IDE_Obj, info provides information about the object:

IDE_Obj = adivdsp(“sessionname”, "Testsession")

ADIVDSP Object:

Session name : Testsession
Processor name - ADSP-BF533
Processor type : ADSP-BF533

Processor number : O

Default timeout : 10.00 secs

objinfo = info(IDE_Obj)

objinfo
procname: “ADSP-BF533*
proctype: "ADSP-BF533*

revision: "*

objinfo.procname

1-297

1 Alphabetical List

1-298

ans =

ADSP-BF533

See Also

dec2hex | get | set

Introduced in R2011a

insert

insert

Insert debug point in file

Syntax

insert(IDE Obj,addr,type,timeout)

insert(IDE_Obj,addr)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

insert(IDE _Obj,addr,type,timeout) places a debug point at the provided address
of the processor. The IDE_Obj handle defines the processor that will receive the new
debug point. The debug point location is defined by addr, the desired memory address.
The IDEs support several types of debug points. Refer to your IDE help documentation
for information on their respective behavior. The following table shows which debug

types each IDE supports.

CCS IDE VisualDSP++
"break” (default) Yes Yes
"watch*®
"probe* Yes

The timeout parameter defines how long to wait (in seconds) for the insert to complete.
If this period is exceeded, the routine returns immediately with a timeout error. In
general the action (insert) still occurs, but the timeout value gave insufficient time to
verify the completion of the action.

1-299

1 Alphabetical List

insert(IDE _Obj ,addr) same as the preceding example, except the timeout
value defaults to the timeout property specified by the IDE_Obj object. Use
get(IDE Obj,"timeout™) to examine this default timeout value.

With insert(IDE Obj,file,line) the timeout value defaults to the timeout property
specified by the IDE_ODbj object. Use get(IDE_0Obj , "timeout™) to examine this default
timeout value.

See Also

address | run

Introduced in R2011a

1-300

isenabled

isenabled

Determine whether RTDX link 1s enabled for communications

Note: Support for isenabled on C5000 processors will be removed in a future version.

Syntax

isenabled(rx, "channel™)
isenabled(rx)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description
isenabled(rx, "channel*™) returns ans = 1 when the RTDX channel specified
by character vector "channel” is enabled for read or write communications. When

"channel” has not been enabled, isenabled returns ans = 0

isenabled(rx) returns ans = 1 when RTDX has been enabled, independent of a
channel. When you have not enabled RTDX you get ans = 0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and report the RTDX
status. Therefore the you must meet the following requirements to use isenabled.

1 The processor must be running a program when you query the RTDX interface.

1-301

1 Alphabetical List

2 You must enable the RTDX interface before you check the status of individual
channels or the interface.

3 Your processor program must be polling periodically for isenabled to work.

Note: For isenabled to return valid results, your processor must be running a loaded
program. When the processor is not running, isenabled returns a status that may not
represent the true state of the channels or RTDX.

Examples

With a program loaded on your processor, you can determine whether RTDX channels
are ready for use. Restart your program to be sure it is running. The processor must be
running for isenabled and enabled to function. This example creates a ticcs object
IDE_Obj to begin.

restart(IDE 0bj)

run(IDE_Obj,"runv);

rtdx.enable(IDE_Obj,"ichan™);

rtdx. isenabled(IDE_Obj,"ichan®)

MATLAB software returns 1 indicating that your channel "ichan® is enabled for RTDX
communications. To determine the mode for the channel, use rtdx(IDE_0bj) to display
the object properties.

See Also

clear | disable | enable

Introduced in R2011a

1-302

isreadable

isreadable

Determine whether specified memory block can read MATLAB software

Note: Support for isreadable(rx, "channel®) on C5000 processors will be removed in
a future version.

Syntax

isreadable(IDE Obj ,address, "datatype” ,count)
isreadable(IDE Obj ,address, "datatype*®)
isreadable(rx, "channel™)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

isreadable(IDE_Obj ,address, “datatype® ,count) returns 1 if the processor
referred to by IDE_0Obj can read the memory block defined by the address, count, and
datatype input arguments. When the processor cannot read a portion of the specified
memory block, isreadable returns 0. You use the same memory block specification for
this function as you use for the read function.

The data block being tested begins at the memory location defined by address. count
determines the number of values to be read. datatype defines the format of data stored
in the memory block. isreadable uses the datatype character vector to determine the
number of bytes to read per stored value. For details about each input parameter, read
the following descriptions.

address — isreadable uses address to define the beginning of the memory block to
read. You provide values for address as either decimal or hexadecimal representations

1-303

1 Alphabetical List

of a memory location in the processor. The full address at a memory location consists
of two parts: the offset and the memory page, entered as a vector [location, page], a
character vector, or a decimal value.

When the processor has only one memory page, as is true for many digital signal
processors, the page portion of the memory address is 0. By default, ticcs sets the page
to O at creation if you omit the page property as an input argument. For processors that
have one memory page, setting the page value to 0 lets you specify memory locations in
the processor using the memory location without the page value.

Examples of Address Property Values

Property Value Address Type Interpretation

"1F* Character vector Location is 31 decimal on the page
referred to by page(IDE_0Obj)

10 Decimal Address is 10 decimal on the page referred
to by page(IDE_0bj)

[18,1] Vector Address location 10 decimal on memory
page 1 (page(IDE_0Obj) = 1)

To specify the address in hexadecimal format, enter the address property value as

a character vector. isreadable interprets the character vector as the hexadecimal
representation of the desired memory location. To convert the hex value to a decimal
value, the function uses hex2dec. When you use the character vector option to enter the
address as a hex value, you cannot specify the memory page. For character vector input,
the memory page defaults to the page specified by page(IDE_0bj).

count — A numeric scalar or vector that defines the number of datatype values to test
for being readable. To produce parallel structure with read, count can be a vector to
define multidimensional data blocks. This function tests a block of data whose size is the
product of the dimensions of the input vector.

datatype — A character vector that represents a MATLAB software data type. The total
memory block size is derived from the value of count and the datatype you specify.
datatype determines how many bytes to check for each memory value. isreadable
supports the following data types.

datatype Value Number of Bytes/ | Description
Value
"double* 8 Double-precision floating point values

1-304

isreadable

datatype Value Number of Bytes/ | Description
Value
"int8" 1 Signed 8-bit integers
"intl6e" 2 Signed 16-bit integers
"int32° 4 Signed 32-bit integers
"single” 4 Single-precision floating point data
"uint8- 1 Unsigned 8-bit integers
"uintl6*” 2 Unsigned 16-bit integers
"uint32*° 4 Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks for valid address
values. Illegal address values would be an address space larger than the available space
for the processor:

2% for the C6xxx series

21% for the C5xxx series

When the function identifies an illegal address, it returns an error message stating that
the address values are out of range.

isreadable(IDE Obj,address,"datatype™) returns 1 if the processor referred to
by IDE Obj can read the memory block defined by the address, and datatype input
arguments. When the processor cannot read a portion of the specified memory block,
isreadable returns 0. Notice that you use the same memory block specification for
this function as you use for the read function. The data block being tested begins at the
memory location defined by address. When you omit the count option, count defaults
to one.

isreadable(rx, "channel™) returns a 1 when the RTDX channel specified by the
character vector channel, associated with link rx, is configured for read operation.
When channel is not configured for reading, isreadable returns 0.

Like the iswritable, read, and write functions, isreadable checks for valid address
values. Illegal address values are address spaces larger than the available space for the
processor:

232 for the C6xxx series

1-305

1 Alphabetical List

1-306

216 for the C5xxx series

When the function identifies an illegal address, it returns an error message stating that
the address values are out of range.

Note: isreadable relies on the memory map option in the IDE. If you did not define the
memory map for the processor in the IDE, isreadable does not produce useful results.
Refer to your Texas Instruments Code Composer Studio documentation for information
on configuring memory maps.

Examples

When you write scripts to run models in the MATLAB environment and the IDE, the
isreadable function is very useful. Use I1sreadable to check that the channel from
which you are reading is configured.

IDE_Obj = ticcs;
rx = rtdx(IDE_Obj);

% Define read and write channels to the processor linked by IDE_Obj.
open(rx, "ichannel*,"r");s

open(rx, "ochannel *,*w");

enable(rx, "ochannel *);

enable(rx, "ichannel ") ;

isreadable(rx, "ochannel ™)
ans =

0

isreadable(rx, "ichannel ™)
ans =

1

Now that your script knows that it can read from ichannel, it proceeds to read
messages as required.

See Also

hex2dec | iswritable | read

Introduced in R2011a

isrtdxcapable

isrtdxcapable

Determine whether processor supports RTDX

Note: Support for isrtdxcapable on C5000 processors will be removed in a future
version.

Syntax

b = isrtdxcapable(IDE 0Obj)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

b = isrtdxcapable(IDE 0bj) returns b = 1 when the processor referenced by object
IDE 0Obj supports RTDX. When the processor does not support RTDX, isrtdxcapable
returns b = 0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable checks each
processor on the processor, as defined by the IDE_0bj object, and returns the RTDX
capability for each processor on the board. In the returned variable b, you find a vector
that contains the information for each accessed processor.

1-307

1 Alphabetical List

Examples

Create a link to your C6711 DSK. Test to see if the processor on the board supports
RTDX.

IDE_Obj = ticcs; %Assumes you have one board and it is the C6711 DSK.
b = isrtdxcapable(IDE_Obj)
b =

1

Introduced in R2011a

1-308

isrunning

isrunning

Determine whether processor is executing process

Syntax

isrunning(IDE _0bj)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

* Texas Instruments Code Composer Studio v3

Description

isrunning(IDE_0Obj) returns 1 when the processor is executing a program. When the
processor is halted, isrunning returns 0.

Examples

isrunning lets you determine whether the processor is running. After you load a
program to the processor, use isrunning to verify that the program is running.

load(IDE_Obj ,"program.exe”, "program®)
run(IDE_Obj)
isrunning(IDE_Obj)
ans =
1

halt(IDE_Obj)
isrunning(IDE_Obj)

1-309

1 Alphabetical List

ans =

See Also

halt | load | run

Introduced in R2011a

1-310

isvisible

isvisible

Determine whether IDE appears on desktop

Syntax

isvisible(IDE 0bj)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

* Texas Instruments Code Composer Studio v3

Description

isvisible(IDE_0bj) returns 1 if the IDE is running on the desktop and the window is
open. If the IDE is not running or is running in the background, this method returns O.

Examples

First use a constructor to create an IDE handle object and start the IDE. To determine if
the IDE is visible:

isvisible(IDE_Obj) #determine if the ide is visible
ans =

1
visible(IDE_Obj,0) #make the ide invisible
isvisible(IDE_Obj) #determine if the ide is visible

ans =

0

1-311

1 Alphabetical List

1-312

Notice that the IDE is not visible on your desktop. Recall that MATLAB software did not
open the IDE. When you close MATLAB software with the IDE in this invisible state,
the IDE remains running in the background. To close it, perform either of the following
tasks:

Open MATLAB software. Create a link to the IDE. Use the new link to make the IDE
visible. Close the IDE.

Open Microsoft® Windows Task Manager. Click Processes. Find and highlight
IDE_Obj_app-exe. Click End Task.

See Also

info | visible

Introduced in R2011a

iswritable

iswritable

Determine whether MATLAB can write to specified memory block

Note: Support for iswritable(rx, "channel ") on C5000 processors will be removed in
a future version.

Syntax

iswritable(IDE Obj ,address, "datatype” ,count)
iswritable(IDE Obj ,address, "datatype”)
iswritable(rx, "channel ™)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

iswritable(IDE 0Obj,address, "datatype”,count) returns 1 if MATLAB software
can write to the memory block defined by the address, count, and datatype input
arguments on the processor referred to by IDE_Obj. When the processor cannot write

to a portion of the specified memory block, iswritable returns 0. You use the same
memory block specification for this function as you use for the write function.

The data block being tested begins at the memory location defined by address. count
determines the number of values to write. datatype defines the format of data stored in
the memory block. iswritable uses the datatype parameter to determine the number
of bytes to write per stored value. For details about each input parameter, read the
following descriptions.

1-313

1 Alphabetical List

1-314

address — iswritable uses address to define the beginning of the memory

block to write to. You provide values for address as either decimal or hexadecimal
representations of a memory location in the processor. The full address at a memory
location consists of two parts: the offset and the memory page, entered as a vector
[Location, page], a character vector, or a decimal value. When the processor has only
one memory page, as is true for many digital signal processors, the page portion of the
memory address is 0. By default, ticcs sets the page to O at creation if you omit the
page property as an input argument.

For processors that have one memory page, setting the page value to 0 lets you specify
memory locations in the processor using the memory location without the page value.

Examples of Address Property Values

Property Value Address Type Interpretation

1F Character vector Location is 31 decimal on the page
referred to by page(IDE_0Obj)

10 Decimal Address is 10 decimal on the page
referred to by page(IDE_Obj)

[18,1] Vector Address location 10 decimal on
memory page 1 (page(IDE 0Obj) =
1)

To specify the address in hexadecimal format, enter the address property value as

a character vector. iswritable interprets the character vector as the hexadecimal
representation of the desired memory location. To convert the hex value to a decimal
value, the function uses hex2dec. When you use the character vector option to enter the
address as a hex value, you cannot specify the memory page. For character vector input,
the memory page defaults to the page specified by page(IDE_0bj).

count — A numeric scalar or vector that defines the number of datatype values to test
for being writable. To produce parallel structure with write, count can be a vector to
define multidimensional data blocks. This function tests a block of data whose size is the
total number of elements in matrix specified by the input vector. If count is the vector
[10 10 10], then:

iswritable(IDE_Obj,31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the processor. For a two-dimensional
matrix defined with count as

iswritable

iswritable(IDE_Obj,31,[5 6])
iswritable writes 30 values to the processor.

datatype — a character vector that represents a MATLAB data type. The total memory
block size is derived from the value of count and the specified datatype. datatype
determines how many bytes to check for each memory value. iswritable supports the
following data types.

datatype Value Description

"double* Double-precision floating point values
"int8" Signed 8-bit integers

"intl6” Signed 16-bit integers

"iInt32° Signed 32-bit integers

"single” Single-precision floating point data
"uint8*® Unsigned 8-bit integers

"uintl6” Unsigned 16-bit integers

"uint32* Unsigned 32-bit integers

iswritable(IDE_Obj,address, "datatype”) returns 1 if the processor referred to
by IDE_Obj can write to the memory block defined by the address, and count input
arguments. When the processor cannot write a portion of the specified memory block,
iswritable returns 0. Notice that you use the same memory block specification for this
function as you use for the write function. The data block tested begins at the memory
location defined by address. When you omit the count option, count defaults to one.

Note: iswritable relies on the memory map option in the IDE. If you did not define the
memory map for the processor in the IDE, this function does not produce useful results.
Refer to your Texas Instruments Code Composer Studio documentation for information
on configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks for valid address
values. Illegal address values would be an address space larger than the available space
for the processor:

* 9232 for the C6xxx series

1-315

1 Alphabetical List

1-316

216 for the C5xxx series

When the function identifies an illegal address, it returns an error message stating that
the address values are out of range.

iswritable(rx, "channel ") returns a Boolean value signifying whether the RTDX
channel specified by channel and rx, is configured for write operations.

Examples

When you write scripts to run models in MATLAB software and the IDE, the
iswritable function is very useful. Use iswritable to check that the channel to which
you are writing to is indeed configured.

IDE_Obj = ticcs;
rx = rtdx(IDE_Obj);

% Define read and write channels to the processor linked by IDE_Obj.
open(rx, "ichannel®,"r");

open(rx, "ochannel®,*w");

enable(rx, "ochannel *);

enable(rx, "ichannel*);

iswritable(rx, "ochannel ")
ans =

1

iswritable(rx, "ichannel ")
ans =

0

Now that your script knows that it can write to "ichannel ®, it proceeds to write
messages as required.

See Also

hex2dec | isreadable | read

Introduced in R2011a

list

list

Information listings from IDE
Syntax

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

Using list with CCS IDE

infolist = list(IDE _Obj,type)reads information about your CCS session and
returns it in infolist. Different types of information and return formats apply
depending on the input arguments you supply to the l1ist function call. The type
argument specifies which information listing to return. To determine the information
that list returns, use one of the following as the type parameter character vector:

* project — Tell Iist to return information about the current project in CCS.

+ variable — Tell list to return information about one or more embedded variables.

+ globalvar — Tell list to return information about one or more global embedded
variables.

+ function — Tell list to return details about one or more functions in your project.

The list function returns dynamic CCS information that can be altered by the user.
Returned listings represent snapshots of the current CCS configuration only. Be aware
that earlier copies of infol ist might contain stale information.

Also, Iist may report incorrect information when you make changes to variables from
MATLAB software. To report variable information, 1 ist uses the CCS API, which only
knows about variables in CCS. Your changes from MATLAB software do not appear

1-317

1 Alphabetical List

1-318

through the API and list. For example, the following operations return incorrect or old
data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArrayl[]);

After creating the function object fcnObj, perform a declare operation with this
character vector to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArrayl[]);
Now try using list to return information about signedShortArrayl.
list(fcnObj, "signedShortArrayl®)

address: [3442 1]

location: [1x66 char]
size: 1

bitsize: 16

reftype: “short”

referent: [1x1 struct]
member_pts_to_same_struct: 0

name: "signedShortArrayl”

You get this outcome because 1ist uses the CCS API to query information about a
particular variable. As far as the API is concerned, the first input variable is a short*.
Changing the declaration does not change anything.

When you specify option type as project, for example infolist =
list("project”), the method returns a vector of structures that contain project
information in the following format.

infolist Structure Element Description

infolist(1l).name Project file name (with path).

infolist(1).-type Project type — project, projlib, or
projext, refer to new.

infolist(1l).processortype Character vector description of processor CPU.

infolist(l).srcfiles Vector of structures that describes project

source files. Each structure contains the
name and path for each source file —
infolist(l).srcfiles._name.

list

infolist Structure Element Description

infolist(1l).buildcfg Vector of structures that describe build
configurations, each with the following entries:

+ infolist(l).buildcfg.name — the
build configuration name.

+ infolist(l).buildcfg.outpath — the
default folder for storing the build output.

infolist(2)....
infolist(n)....

infolist = list(IDE Obj,"variable™) returns a structure of structures

that contains information on the local variables within scope. The list also includes
information on the global variables. However, that if a local variable has the same
symbol name as a global variable, list returns the information about the local variable.

infolist = list(IDE _Obj,"variable”,varname) returns information about the
specified variable varname.

infolist = list(IDE Obj,"variable”,varnamelist) returns information about
variables in a list specified by varnamel ist. The information returned in each structure
follows the following format when you specify option type as variable.

infolist Structure Element Description

infolist.varname(l) .name Symbol name.

infolist.varname(l).isglobal Indicates whether symbol is global or local.

infolist.varname(l).location Information about the location of the
symbol.

infolist.varname(l).size Size per dimension

infolist.varname(l) .uclass ticcs object class that matches the type of

this symbol.

infolist.varname(1).bitsize Size in bits. More information is added to
the structure depending on the symbol type.

infolist.varname(2)....

infolist.varname(n)....

1-319

1 Alphabetical List

1-320

I ist uses the variable name as the field name to refer to the structure information for
the variable.

infolist = list(IDE Obj,"globalvar®) returns a structure that contains
information on the global variables.

infolist = list(IDE Obj,"globalvar®,varname) returns a structure that
contains information on the specified global variable.

infolist = list(IDE _Obj,"globalvar®,varnamelist) returns a structure that
contains information on global variables in the list. The returned information follows the
same format as the syntax infolist = list(IDE _Obj,"variable®,._.).

infolist = list(IDE Obj,"function®) returns a structure that contains
information on the functions in the embedded program.

infolist = list(IDE _Obj, "function®,functionname) returns a structure that
contains information on the specified function functionname.

infolist = list(IDE Obj,"function®,functionnamelist) returns a structure
that contains information on the specified functions in functionnamelist. The
returned information follows the following format when you specify option type as
function.

infolist Structure Element Description
infolist. functionname(l) .name Function name
infolist.functionname(l).filename Name of file where function is
defined
infolist.functionname(l) .address Relevant address information
such as start address and end
address
infolist.functionname(l).funcvar Variables local to the function
infolist.functionname(l).uclass ticcs object class that
matches the type of this
symbol — function
infolist.functionname(l) . funcdecl Function declaration —
where information such as
the function return type is
contained

list

infolist Structure Element Description

infolist.functionname(l).islibfunc Determine if the library is a
function

infolist.functionname(l).linepos Start and end line positions of
function

infolist.functionname(l).funcinfo Miscellaneous information

about the function

infolist.functionname(2)...

infolist.functionname(n)...

To refer to the function structure information, 1 ist uses the function name as the field
name.

The following list provides important information about variable and field names:
* When a variable name, type name, or function name is not a valid MATLAB software
structure field name, 1ist replaces or modifies the name so it becomes valid.

* In field names that contain the invalid dollar character $, I ist replaces the $ with
DOLLAR.

* Changing the MATLAB software field name does not change the name of the
embedded symbol or type.

Examples

To show how to use list with a defined C type, variable typenamel includes the type
argument. Because valid field names cannot contain the $ character, 1 ist changes the $
to DOLLAR.

typenamel = "$fake3"; % name of defined C type with no tag
list(IDE_Obj, "type” ,typenamel);
ans =
DOLLARfTakeO : [typeinfo]
ans.DOLLARFakeO =
type: "struct $fakeO"

size: 1
uclass: "structure”

1-321

1 Alphabetical List

sizeof: 1
members: [1x1 struct]

When you request information about a project in CCS, you see a listing like the following
that includes structures containing details about your project.
projectinfo = list(IDE_Obj, “project”®)

projectinfo =

name: "D:\Work\c671ldskafxr_c6000_rtw\c671ldskafxr.pjt*
type: “project”
processortype: "TMS320C67XX*
srcfiles: [69x1 struct]
buildcfg: [3x1 struct]

See Also

info

Introduced in R2011a

1-322

listsessions

listsessions

List existing sessions

Syntax

listsessions
listsessions("verbose*®)

list
list

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

Description

list = listsessions returns list that contains a listing of the sessions by name
currently in the development environment.

list = listsessions("verbose™) adds the optional input argument verbose
When you include the verbose argument, listsessions returns a cell array that
contains one row for each existing session. Each row has three columns — processor type,
platform name, and processor name.

See Also

adivdsp

Introduced in R2011a

1-323

1 Alphabetical List

load

Load program file onto processor

Syntax

load(IDE Obj,filename,timeout)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

load(IDE Obj,filename,timeout) loads the file specified by the filename
argument to the processor.

The filename argument can include a full path to the file, or the name of a file in the
IDE working folder.

With the Visual DSP++ and Code Composer Studio IDEs, you can use the cd method to
check or modify the IDE working folder.

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits for the load
process to complete. If the time-out period expires before the load process returns a
completion message, MATLAB generates an error and returns. Usually the program load
process works in spite of the error message.

If you omit the timeout argument, load uses the timeout property of the IDE handle
object, which you can get by entering get(IDE_Obj , "timeout™).

1-324

load

Examples

load(IDE _Obj ,programfile)
run(id)

See Also

cd | dir | open

Introduced in R2011a

1-325

1 Alphabetical List

1-326

ExecutionTimelnSeconds

Get execution time in seconds for profiled section of code

Syntax

ExecutionTimes = NthSectionProfile.ExecutionTimelnSeconds

Description

ExecutionTimes = NthSectionProfile.ExecutionTimelnSeconds returns a
vector of execution times, measured in seconds, for the profiled section of code. Each
element of ExecutionTimes contains the difference between the timer reading at the
start and the end of the section.

If you set the CodeProfilingSaveOptions parameter to "SummaryOnly”,
NthSectionProfile.ExecutionTimelnSeconds returns an empty array. To change
that parameter, open the Configuration Parameters dialog box by pressing Ctrl+E,
open the Verification pane under Code Generation, and change the Save options
parameter to All data.

Examples

Get Execution Times for Code Section

Run a simulation with a model that is configured to generate a workspace variable with
execution time measurements.

rtwdemo_sil_topmodel ;

set_param(“rtwdemo_sil_topmodel®, “CodeExecutionProfiling®, “on®);
set_param(“rtwdemo_sil_topmodel®, “SimulationMode®, “software-in-the-loop (SIL)");
set_param(“rtwdemo_sil_topmodel®, “CodeProfilinglnstrumentation®, “on®);
set_param(“rtwdemo_sil_topmodel®, “CodeProfilingSaveOptions®, “AllData");

sim("rtwdemo_sil_topmodel*);
The simulation generates the workspace variable executionProfile (default).

At the end of the simulation, get the profile for the seventh code section.

SeventhSectionProfile = executionProfile._Sections(7);

ExecutionTimelnSeconds

Get vector of execution times for the code section.

time_vector = SeventhSectionProfile.ExecutionTimelnSeconds;

Input Arguments

NthSectionProfile — coder.profile.ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property Sections.

Output Arguments

ExecutionTimes — Execution time measurements
double

Execution times, in seconds, for section of code. Returned as a vector.

See Also

See Also

ExecutionTimelnTicks | Sections

Topics
“Code Execution Profiling with SIL and PIL”
“Analyze Code Execution Data”

Introduced in R2013a

1-327

1 Alphabetical List

1-328

ExecutionTimelnSeconds

Get execution time in seconds for profiled section of code

Syntax

ExecutionTimes = NthSectionProfile.ExecutionTimelnSeconds

Description

ExecutionTimes = NthSectionProfile.ExecutionTimelnSeconds returns a
vector of execution times, measured in seconds, for the profiled section of code. Each
element of ExecutionTimes contains the difference between the timer reading at the
start and the end of the section.

Examples

Get Execution Times for Code Section

Copy MATLAB code to your working folder.

src_dir = __.
fullfile(docroot, "toolbox", "coder”, "examples”, "kalman®);

copyfile(fullfile(src_dir, "kalman01.m"), ".%)
copyfile(fullfile(src_dir, "testOl_ui.m"), ".7)
copyfile(fullfile(src_dir, "plot_trajectory.m"), ".%)
copyfile(fullfile(src_dir, "position.mat®), ".")

Set up and run a SIL execution.

config = coder.config("lib");
config.GenerateReport = true;

config.VerificationMode = "SIL";
config.CodeExecutionProfiling = true;

ExecutionTimelnSeconds

codegen("-config”, config, "-args®, {zeros(2,1)}, "kalman01%);
coder _runTest("testO01l ui”, [“kalmanOl_sil." mexext]);

At end of the execution, you see the following message.

To terminate execution: clear kalmanOl_sil
Execution profiling report available after termination.

Click the link clear kalmanO1_sil.

Stopping SIL execution for “kalmanO1-
Execution profiling report: report(getCoderExecutionProfile("kalman01®))

Create a workspace variable that holds execution time data.

executionProfile=getCoderExecutionProfile("kalman017);

Get the profile for the second code section.

SecondSectionProfile = executionProfile.Sections(2);

Get vector of execution times for the code section.

time_vector = SecondSectionProfile._ExecutionTimelnSeconds;

Input Arguments

NthSectionProfile — coder._profile._ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property Sections.

Output Arguments

ExecutionTimes — Execution time measurements
double

Execution times, in seconds, for section of code. Returned as a vector.

1-329

1 Alphabetical List

See Also

See Also

ExecutionTimelnTicks | getCoderExecutionProfile | Sections

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2013a

1-330

ExecutionTimelnTicks

ExecutionTimelnTicks

Get execution times in timer ticks for profiled section of code

Syntax

NthSectionProfile.ExecutionTimelnTicks

ExecutionTimes

Description

ExecutionTimes = NthSectionProfile_ExecutionTimelnTicks returns a vector
of execution times, measured in timer ticks, for the profiled section of code. Each element
of ExecutionTimes contains the difference between the timer reading at the start and
the end of the section. The data type of the arrays is the same as the data type of the
timer used on the target, which allows you to infer the maximum range of the timer
measurements.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

If you set the CodeProfilingSaveOptions parameter to "SummaryOnly”®,
NthSectionProfile .ExecutionTimelnTicks returns an empty array. To change
that parameter, open the Configuration Parameters dialog box by pressing Ctrl+E,
open the Verification pane under Code Generation, and change the Save options
parameter to Al data.

Tip: You can calculate the execution time in seconds using the formula

ExecutionTimelnSecs = ExecutionTimelnTicks / TimerTicksPerSecond

Output Arguments

ExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code

1-331

1 Alphabetical List

SelfExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code but excluding time
spent in child functions

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSelfTimeCal INum
| MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks |
SelfTimelnTicks | MaximumSelfTimelnTicks | TotalSelfTimelnTicks
| MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-332

ExecutionTimelnTicks

ExecutionTimelnTicks

Get execution times in timer ticks for profiled section of code

Syntax

ExecutionTimes NthSectionProfile.ExecutionTimelnTicks

Description

ExecutionTimes = NthSectionProfile_ExecutionTimelnTicks returns a vector
of execution times, measured in timer ticks, for the profiled section of code. Each element
of ExecutionTimes contains the difference between the timer reading at the start and
the end of the section. The data type of the arrays is the same as the data type of the
timer used on the target, which allows you to infer the maximum range of the timer
measurements.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Tip: You can calculate the execution time in seconds using the formula

ExecutionTimelnSecs = ExecutionTimelnTicks / TimerTicksPerSecond

Alternatively, setTimerTicksPerSecond and use ExecutionTimelnSeconds.

Output Arguments

ExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code

See Also

Sections | NumCalls | MaximumSelfTimeCal INum |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks

1-333

1 Alphabetical List

1-334

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | ExecutionTimelnSeconds
getCoderExecutionProfile | TimerTicksPerSecond | report | Name | Number |
MaximumExecutionTimeCalINum | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

MaximumExecutionTimeCallNum

MaximumExecutionTimeCallNum

Get the call number at which maximum number of timer ticks occurred

Syntax

MaxTicksCallNum = NthSectionProfile .MaximumExecutionTimeCal INum

Description

MaxTicksCallNum = NthSectionProfile.MaximumExecutionTimeCal INum
returns the call number at which the maximum number of timer ticks was recorded in a
single invocation of the profiled code section during a simulation.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxTicksCallNum

Call number at which the maximum number of timer ticks occurred for a single
invocation of the profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name |
ExecutionTimelnTicks | Number | NumCalls | MaximumSel fTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”

1-335

1 Alphabetical List

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-336

MaximumExecutionTimeCallNum

MaximumExecutionTimeCallNum

Get the call number at which maximum number of timer ticks occurred

Syntax

MaxTicksCallNum = NthSectionProfile .MaximumExecutionTimeCal INum

Description

MaxTicksCallNum = NthSectionProfile.MaximumExecutionTimeCal INum
returns the call number at which the maximum number of timer ticks was recorded in a
single invocation of the profiled code section during an execution.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxTicksCallNum

Call number at which the maximum number of timer ticks occurred for a single
invocation of the profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks
TotalExecutionTimelnTicks | MaximumSelfTimelnTicks |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks | Sections |
report | Name | Number | MaximumSelfTimeCalINum | SelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks |
MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”

1-337

1 Alphabetical List

“Analyze Execution Time Data”

Introduced in R2012b

1-338

MaximumExecutionTimelnTicks

MaximumExecutionTimelnTicks

Get maximum number of timer ticks for single invocation of profiled code section

Syntax

MaxTicks = NthSectionProfile.MaximumExecutionTimelnTicks

Description

MaxTicks = NthSectionProfile_MaximumExecutionTimelnTicks returns the
maximum number of timer ticks recorded in a single invocation of the profiled code
section during a simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections

Output Arguments

MaxTicks

Maximum number of timer ticks for single invocation of profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name |
ExecutionTimelnTicks | Number | NumCalls | MaximumExecutionTimeCal INum
| MaximumSelfTimeCalINum | ExecutionTimelnTicks |
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | MaximumTurnaroundTimelnTicks

| MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-339

1 Alphabetical List

1-340

Topics
“Code Execution Profiling with SIL and PIL”

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

MaximumExecutionTimelnTicks

MaximumExecutionTimelnTicks

Get maximum number of timer ticks for single invocation of profiled code section

Syntax

MaxTicks = NthSectionProfile.MaximumExecutionTimelnTicks

Description

MaxTicks = NthSectionProfile_MaximumExecutionTimelnTicks returns the
maximum number of timer ticks recorded in a single invocation of the profiled code
section during an execution.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections

Output Arguments

MaxTicks

Maximum number of timer ticks for single invocation of profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | MaximumTurnaroundTimelnTicks

| MaximumTurnaroundTimeCalINum | Sections | report | Name |

Number | MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
SelfTimelnTicks | TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
| MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-341

1 Alphabetical List

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-342

TotalExecutionTimelnTicks

TotalExecutionTimelnTicks

Get total number of timer ticks recorded for profiled code section

Syntax

TotalTicks = NthSectionProfile.TotalExecutionTimelnTicks

Description

TotalTicks = NthSectionProfile.TotalExecutionTimelnTicks returns
the total number of timer ticks recorded for the profiled code section over the entire
simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections

Output Arguments

TotalTicks

Total number of timer ticks for profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSe I fTimeCal INum
| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
SelfTimelnTicks | MaximumSelfTimelnTicks | TotalSelfTimelnTicks
| MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

1-343

1 Alphabetical List

“Analyze Code Execution Data”

Introduced in R2012b

1-344

TotalExecutionTimelnTicks

TotalExecutionTimelnTicks

Get total number of timer ticks recorded for profiled code section

Syntax

TotalTicks = NthSectionProfile.TotalExecutionTimelnTicks

Description

TotalTicks = NthSectionProfile.TotalExecutionTimelnTicks returns
the total number of timer ticks recorded for the profiled code section over the entire
execution.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments
TotalTicks

Total number of timer ticks for profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls |
MaximumSelfTimeCal INum | SelfTimelnTicks | TotalSelfTimelnTicks
| MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

| Sections | report | Name | Number | MaximumExecutionTimeCal INum
| ExecutionTimelnTicks | MaximumExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics
“Generate Execution Time Profile”

1-345

1 Alphabetical List

“Analyze Execution Time Data”

Introduced in R2012b

1-346

SelfTimelnTicks

SelfTimelnTicks

Get number of timer ticks recorded for profiled code section, excluding time spent in child
functions

Syntax

SelfTicks = NthSectionProfile.SelfTimelnTicks

Description

SelfTicks = NthSectionProfile.SelfTimelnTicks returns the number of timer
ticks recorded for the profiled code section. However, this number excludes the time
spent in calls to child functions.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

SelfTicks

Number of timer ticks for profiled code section, excluding periods in child functions

See Also

Sections | TimerTicksPerSecond | display | report | Name |
ExecutionTimelnTicks | Number | NumCalls | MaximumExecutionTimeCal INum
| MaximumSelfTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”

1-347

1 Alphabetical List

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-348

SelfTimelnTicks

SelfTimelnTicks

Get number of timer ticks recorded for profiled code section, excluding time spent in child
functions

Syntax

SelfTicks = NthSectionProfile.SelfTimelnTicks

Description

SelfTicks = NthSectionProfile.SelfTimelnTicks returns the number of timer
ticks recorded for the profiled code section. However, this number excludes the time
spent in calls to child functions.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

SelfTicks

Number of timer ticks for profiled code section, excluding periods in child functions

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Name |
Number | MaximumExecutionTimeCalINum | ExecutionTimelnTicks
| MaximumExecutionTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

Topics
“Generate Execution Time Profile”

1-349

1 Alphabetical List

“Analyze Execution Time Data”

Introduced in R2012b

1-350

MaximumSelfTimeCallNum

MaximumSelfTimeCallNum

Get the call number at which the maximum number of timer ticks occurred, excluding
time spent in child functions

Syntax

MaxSelfTicksCallNum NthSectionProfile.MaxSelfTimeCal INum

Description

MaxSelfTicksCallNum = NthSectionProfile_MaxSelfTimeCal INum returns the
call number at which the maximum number of self-time ticks occurred for the profiled
code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxSelfTicksCallNum

Call number at which the maximum number of self-time ticks occurred for profiled code
section

See Also

Sections | TimerTicksPerSecond | display | report | Name |
ExecutionTimelnTicks | Number | NumCalls | MaximumExecutionTimeCal INum
| ExecutionTimelnTicks | MaximumExecutionTimelnTicks
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-351

1 Alphabetical List

1-352

Topics

“Code Execution Profiling with SIL and PIL”
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Introduced in R2012b

MaximumSelfTimeCallNum

MaximumSelfTimeCallNum

Get the call number at which the maximum number of timer ticks occurred, excluding
time spent in child functions

Syntax

MaxSelfTicksCallNum NthSectionProfile.MaxSelfTimeCal INum

Description

MaxSelfTicksCallNum = NthSectionProfile_MaxSelfTimeCal INum returns the
call number at which the maximum number of self-time ticks occurred for the profiled
code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxSelfTicksCallNum

Call number at which the maximum number of self-time ticks occurred for profiled code
section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
TotalExecutionTimelnTicks | MaximumSelfTimelnTicks |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks | Sections |
report | Name | Number | MaximumExecutionTimeCal INum | SelfTimelnTicks
| TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks |
MaximumTurnaroundTimeCal INum

1-353

1 Alphabetical List

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-354

MaximumSelfTimelnTicks

MaximumSelfTimelnTicks

Get the maximum number of timer ticks recorded for profiled code section, excluding
time spent in child functions

Syntax

MaxSelfTicks = NthSectionProfile . MaximumSelfTimelnTicks

Description

MaxSelfTicks = NthSectionProfile.MaximumSelfTimelnTicks returns the
maximum number of timer ticks recorded for the profiled code section. This number
excludes the time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxSelfTicks

Maximum number of timer ticks for profiled code section, excluding periods in child
functions

See Also

Sections | TimerTicksPerSecond | display | report | Name |
ExecutionTimelnTicks | Number | NumCalls | MaximumExecutionTimeCal INum
| MaximumSelfTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks |
SelfTimelnTicks | TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks
| MaximumTurnaroundTimeCal INum | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-355

1 Alphabetical List

1-356

Topics
“Code Execution Profiling with SIL and PIL”

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

MaximumSelfTimelnTicks

MaximumSelfTimelnTicks

Get the maximum number of timer ticks recorded for profiled code section, excluding
time spent in child functions

Syntax

MaxSelfTicks = NthSectionProfile . MaximumSelfTimelnTicks

Description

MaxSelfTicks = NthSectionProfile.MaximumSelfTimelnTicks returns the
maximum number of timer ticks recorded for the profiled code section. This number
excludes the time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxSelfTicks

Maximum number of timer ticks for profiled code section, excluding periods in child
functions

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCal INum | TotalExecutionTimelnTicks |
TotalSelfTimelnTicks | MaximumTurnaroundTimelnTicks |
MaximumTurnaroundTimeCal INum | Sections | report | Name |

Number | MaximumExecutionTimeCal INum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

1-357

1 Alphabetical List

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-358

TotalSelfTimelnTicks

TotalSelfTimelnTicks

Get total number of timer ticks recorded for profiled code section, excluding time spent in
child functions

Syntax

TotalSelfTicks NthSectionProfile.TotalSelfTimelnTicks

Description

TotalSelfTicks = NthSectionProfile_TotalSelfTimelnTicks returns the total
number of timer ticks recorded for the profiled code section over the entire simulation.
However, this number excludes the time spent in calls to child functions.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TotalSelfTicks

Total number of timer ticks for profiled code section, excluding periods in child functions

See Also

Sections | TimerTicksPerSecond | display | report

| Name | ExecutionTimelnTicks | Number | NumCalls |
MaximumExecutionTimeCal INum | MaximumSe I fTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”

1-359

1 Alphabetical List

“View and Compare Code Execution Times”
“Analyze Code Execution Data”

Introduced in R2012b

1-360

TotalSelfTimelnTicks

TotalSelfTimelnTicks

Get total number of timer ticks recorded for profiled code section, excluding time spent in
child functions

Syntax

TotalSelfTicks

NthSectionProfile.TotalSelfTimelnTicks

Description

TotalSelfTicks = NthSectionProfile_TotalSelfTimelnTicks returns the total
number of timer ticks recorded for the profiled code section over the entire execution.
However, this number excludes the time spent in calls to child functions.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TotalSelfTicks

Total number of timer ticks for profiled code section, excluding periods in child functions

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks |
MaximumSelfTimelnTicks | MaximumTurnaroundTimelnTicks |
MaximumTurnaroundTimeCal INum | Sections | report | Name |

Number | MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks

Topics
“Generate Execution Time Profile”

1-361

1 Alphabetical List

“Analyze Execution Time Data”

Introduced in R2012b

1-362

MaximumTurnaroundTimelnTicks

MaximumTurnaroundTimelnTicks

Get maximum number of timer ticks between start and finish of a single invocation of
profiled code section

Syntax

MaxTicks = NthSectionProfile _MaximumTurnaroundTimelnTicks

Description

MaxTicks = NthSectionProfile _MaximumTurnaroundTimelnTicks returns

the maximum number of timer ticks recorded between the start and finish of a single
invocation of the profiled code section during a simulation. Unless the code is pre-empted,
this is the same as the maximum execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

MaxTurnaroundTicks

Maximum number of timer ticks between start and finish of a single invocation of
profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSe l fTimeCal INum
| MaximumTurnaroundTimeCal INum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks |
SelfTimelnTicks | MaximumSelfTimelnTicks | TotalSelfTimelnTicks |
TurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

1-363

1 Alphabetical List

1-364

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

MaximumTurnaroundTimelnTicks

MaximumTurnaroundTimelnTicks

Get maximum number of timer ticks between start and finish of a single invocation of
profiled code section

Syntax

MaxTicks = NthSectionProfile.MaximumTurnaroundTimelnTicks

Description

MaxTicks = NthSectionProfile_MaximumTurnaroundTimelnTicks returns

the maximum number of timer ticks recorded between the start and finish of a single
invocation of the profiled code section during a execution. Unless the code is pre-empted,
this is the same as the maximum execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder_profile.ExecutionTime property Sections.

Output Arguments

MaxTurnaroundTicks

Maximum number of timer ticks between start and finish of a single invocation of
profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Name | Number

| MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimeCal INum

1-365

1 Alphabetical List

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-366

MaximumTurnaroundTimeCallNum

MaximumTurnaroundTimeCallNum

Get call number of the maximum number of timer ticks between start and finish of a
single invocation of profiled code section

Syntax

MaxTurnaroundTicksCallNum =
NthSectionProfile .MaximumTurnaroundTimeCal INum

Description

MaxTurnaroundTicksCallNum =

NthSectionProfile .MaximumTurnaroundTimeCal INum returns the call number in
which the maximum number of timer ticks was recorded between start and finish of a
single invocation of the profiled code section during a simulation. Unless the code is pre-
empted, this is the same as the maximum execution time.

NthSectionProfile is a coder .profile.ExecutionTimeSection object generated
by the coder._profile.ExecutionTime property Sections

Output Arguments

MaxTurnaroundTicksCallNum

Call number of the maximum number of timer ticks between start and finish of a single
invocation of profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSe lfTimeCal INum

| ExecutionTimelnTicks | MaximumExecutionTimelnTicks |
TotalExecutionTimelnTicks | SelfTimelnTicks | MaximumSelfTimelnTicks
| TotalSelfTimelnTicks | TurnaroundTimelnTicks |
MaximumTurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

1-367

1 Alphabetical List

1-368

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

MaximumTurnaroundTimeCallNum

MaximumTurnaroundTimeCallNum

Get call number for the code section invocation with the maximum number of timer ticks
between the start and the finish

Syntax

MaxTurnaroundTicksCallNum =
NthSectionProfile.MaximumTurnaroundTimeCal INum

Description

MaxTurnaroundTicksCallNum =

NthSectionProfile .MaximumTurnaroundTimeCal INum returns the call number in
which the maximum number of timer ticks is recorded between the start and the finish of
an invocation of the profiled code section. Unless the code is pre-empted, this is the same
as the maximum execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections

Output Arguments

MaxTurnaroundTicksCallNum

Call number for the profiled code section invocation with the maximum number of timer
ticks between start and finish

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks

| MaximumSelfTimelnTicks | TurnaroundTimelnTicks |
TotalTurnaroundTimelnTicks | Sections | report | Name | Number
| MaximumExecutionTimeCalINum | ExecutionTimelnTicks |

1-369

1 Alphabetical List

MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-370

TotalTurnaroundTimelnTicks

TotalTurnaroundTimelnTicks

Get total number of timer ticks between start and finish of the profiled code section over
the entire simulation.

Syntax

TotalTurnaroundTicks NthSectionProfile.TotalTurnaroundTimelnTicks

Description

TotalTurnaroundTicks = NthSectionProfile.TotalTurnaroundTimelnTicks
returns the total number of timer ticks recorded between the start and finish of the
profiled code section over the entire simulation. Unless the code is pre-empted, this is the
same as the total execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TotalTurnaroundTicks

Total number of timer ticks between start and finish of the profiled code section over the
entire simulation

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSe l fTimeCal INum
| MaximumTurnaroundTimeCal INum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks |
SelfTimelnTicks | MaximumSelfTimelnTicks | TotalSelfTimelnTicks |
TurnaroundTimelnTicks | MaximumTurnaroundTimelnTicks

1-371

1 Alphabetical List

1-372

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”
“Analyze Code Execution Data”

TotalTurnaroundTimelnTicks

TotalTurnaroundTimelnTicks

Get total number of timer ticks between start and finish of the profiled code section over
the entire execution.

Syntax

totalTurnaroundTicks NthSectionProfile.TotalTurnaroundTimelnTicks

Description

totalTurnaroundTicks = NthSectionProfile.TotalTurnaroundTimelnTicks
returns the total number of timer ticks recorded between the start and finish of the
profiled code section over the entire execution. Unless the code is pre-empted, this is the
same as the total execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

totalTurnaroundTicks

Total number of timer ticks between start and finish of the profiled code section over the
entire execution

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCalINum | TotalExecutionTimelnTicks |
MaximumSelfTimelnTicks | TurnaroundTimelnTicks | Sections | report |
Name | Number | MaximumExecutionTimeCalINum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum

1-373

1 Alphabetical List

Topics
“Generate Execution Time Profile”
“Analyze Execution Time Data”

Introduced in R2012b

1-374

TurnaroundTimelnTicks

TurnaroundTimelnTicks

Get number of timer ticks between start and finish of the profiled code section

Syntax

TurnaroundTicks = NthSectionProfile.TurnaroundTimelnTicks

Description

TurnaroundTicks = NthSectionProfile.TurnaroundTimelnTicks returns the
number of timer ticks recorded between the start and finish of the profiled code section.
Unless the code is pre-empted, this is the same as the execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections

Output Arguments

TurnaroundTicks

Number of timer ticks between start and finish of the profiled code section

See Also

Sections | TimerTicksPerSecond | display | report | Name | Number |
NumCalls | MaximumExecutionTimeCal INum | MaximumSe I fTimeCal INum
| MaximumTurnaroundTimeCal INum | ExecutionTimelnTicks |
MaximumExecutionTimelnTicks | TotalExecutionTimelnTicks |
SelfTimelnTicks | MaximumSelfTimelnTicks | TotalSelfTimelnTicks |
MaximumTurnaroundTimelnTicks | TotalTurnaroundTimelnTicks

Topics
“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

1-375

1 Alphabetical List

“Analyze Code Execution Data”

1-376

TurnaroundTimelnTicks

TurnaroundTimelnTicks

Get number of timer ticks between start and finish of the profiled code section

Syntax

TurnaroundTicks = NthSectionProfile.TurnaroundTimelnTicks

Description

TurnaroundTicks = NthSectionProfile.TurnaroundTimelnTicks returns the
number of timer ticks recorded between the start and finish of the profiled code section.
Unless the code is pre-empted, this is the same as the execution time.

NthSectionProfile is a coder.profile.ExecutionTimeSection object generated
by the coder.profile.ExecutionTime property Sections.

Output Arguments

TurnaroundTicks

Number of timer ticks between start and finish of the profiled code section

See Also

getCoderExecutionProfile | TimerTicksPerSecond | NumCalls

| MaximumSelfTimeCal INum | TotalExecutionTimelnTicks |
MaximumSelfTimelnTicks | Sections | report | Name | Number

| MaximumExecutionTimeCal INum | ExecutionTimelnTicks |
MaximumeExecutionTimelnTicks | SelfTimelnTicks | TotalSelfTimelnTicks
| MaximumTurnaroundTimelnTicks | MaximumTurnaroundTimeCal INum |
TotalTurnaroundTimelnTicks

Topics
“Generate Execution Time Profile”

1-377

1 Alphabetical List

“Analyze Execution Time Data”

Introduced in R2012b

1-378

modifylnheritedParam

modifylnheritedParam

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Modify inherited parameter values

Syntax

modifylnheritedParam(obj, paramName, value)

Description

modifylnheritedParam(obj, paramName, value) changes the value of an
inherited parameter that the Code Generation Advisor verifies in Check model
configuration settings against code generation objectives. Use this method when
you create a new objective from an existing objective.

Input Arguments

obj Handle to a code generation objective object previously created.
paramName Parameter that you modify in the objective.

value Value of the parameter.

Examples

Change the value of Defaul tParameterBehavior to Tunable in the objective.

modifylnheritedParam(obj, "DefaultParameterBehavior®™, "Tunable®);

See Also

get_param

1-379

1 Alphabetical List

Topics
“Create Custom Code Generation Objectives”

1-380

msgcount

msgcount

Number of messages in read-enabled channel queue

Note: Support for msgcount on C5000 processors will be removed in a future version.

Syntax

msgcount(rx, "channel)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

msgcount(rx, "channel ") returns the number of unread messages in the read-enabled
queue specified by channel for the RTDX interface rx. You cannot use msgcount on
channels configured for write access.

Examples

If you have created and loaded a program to the processor, you can write data to the
processor, then use msgcount to determine the number of messages in the read queue.

1 Create and load a program to the processor.
2 Write data to the processor from MATLAB software.

indata = 1:100;
writemsg(rtdx(IDE Obj),"ichannel®, int32(indata));

1-381

1 Alphabetical List

3 Use msgcount to determine the number of messages available in the queue.

num_of_msgs = msgcount(rtdx(IDE_Obj),"ichannel*®)

See Also

read | readmat | readmsg

Introduced in R2011a

1-382

new

new

Create project, library, or build configuration in IDE

Syntax

new(IDE_Obj,“name=,"type~)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

new(IDE Obj,"name" ,"type") creates a project, library, or build configuration in the
IDE.

The name argument specifies the name of the new project, library, or build configuration

The type argument specifies whether to create a project, library, or build configuration.
The options are:

* "project” — Executable project. Sometimes this file is called a “DSP executable
file”.

* "projlib®" — Library project.

* "projext" — External make project. Only the CCS IDE supports this option.

* "buildcfg® — Build configuration in the active project. Only the VisualDSP++ and
CCS IDEs support this option.

When type is "project” or "projlib” , name can include the full path to the new file.
You can use the path to differentiate two files with the same name. If you omit the path,
the new method creates the file or project in the current IDE working folder.

1-383

1 Alphabetical List

If you omit the type argument, and the name argument does not include a file extension,
type defaults to "project”.

When type is "buildcfg”, use a unique name to differentiate the build configuration
from other build configurations in the active project.

The new method does not support "text" as a type argument.

Examples

new(IDE_Obj,"my_project®,"project”) #Create an IDE project, "my_project.gpj”
new(IDE_Obj,"my_build_config®, "buildcfg") #Create a build configuration.

See Also

activate | close

Introduced in R2011a

1-384

open

open

Open project in IDE

Syntax
open(IDE_Obj,filename,filetype,timeout)
open(IDE 0Obj ,myproject)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

open(IDE Obj,filename,filetype,timeout) opens a project in the IDE.

Use the filename argument to specify the file name, including the file name extension.
If the filename does not include a file name extension, you can specify the file type
using the filetype argument. If the file does not exist in the current project or folder
path, MATLAB returns a warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following types.

CCS IDE VisualDSP++ IDE
"project” — Project files |Yes Yes
"ProjectGroup” — No Yes
Project group files
"program® — Target No. Use load instead. No
program file (executable)
If you omit the filetype argument, filetype defaults to "project-.

1-385

1 Alphabetical List

1-386

The optional timeout argument determines the number of seconds MATLAB waits for
the IDE to finish opening the file before returning an error. If you omit the timeout
argument, the open method uses the timeout property of the IDE handle object
(IDE_Obj) instead. The timeout error does not terminate the loading process on the IDE.

Note: The open method does not support the "text”, "program®, or "workspace*
arguments.

Examples

open(IDE_Obj ,myproject) opens the myproject project in the IDE.

See Also

cd | dir | load | new

Introduced in R2011a

p|ot

plot

Class: cgv.CGV
Package: cgv

Create plot for signal or multiple signals

Syntax

[signal_names, signal_figures] = cgv.CGV.plot(data_set)
[signal_names, signal_figures] cgv.CGV.plot(data_set, "Signals”,
signal_list)

Description

[signal_names, signal_figures] = cgv.CGV._plot(data_set) create a plot for
each signal in the data_set.

[signal _names, signal_figures] = cgv.CGV.plot(data_ set, "Signals”,
signal_list) create a plot for each signal in the value of "Signals® and return the
names and figure handles for the given signal names.

Input Arguments

data_set

Output data from a model. After running the model, use the cgv.CGV.getOutputData
function to get the data. The cgv.CGV.getOutputData function returns a cell array of
the output signal names.

"Signals®, signal_list

Parameter/value argument pair specifying the signal or signals to plot. The value

for this parameter can be an individual signal name, or a cell array of character

vectors, where each character vector is a signal name in the data_set. Use
cgv.CGV.getSavedSignals to view the list of available signal names in the data_set.
The syntax for an individual signal name is:

1-387

1 Alphabetical List

1-388

signal_list = {"log_data.subsystem name.Data(:,1)"}
The syntax for a list of signal names is:

signal_list = {"log_data.block name.Data(:,1)",...

"log_data.block _name.Data(:,2)",...

"log_data.block _name.Data(:,3)",...

"log_data.block _name.Data(:,4)"};
If a component of your model contains a space or newline character, MATLAB adds
parentheses and a single quote to the name of the component. For example, if a section of
the signal has a space, "block name®, MATLAB displays the signal name as:

log data.("block name®).Data(:,1)
To use the signal name as input to a CGV function, "block name® must have two single
quotes. For example:

signal_list = {"log_data.(""block name*®*") _Data(:,1)"}

Output Arguments

Depending on the data, one or more of the following parameters might be empty:
signal_names

Cell array of signal names

signal_figures

Array of figure handles for signals

See Also

Topics
“Verify Numerical Equivalence with CGV”

profile

profile

Generate real-time execution or stack profiling report

Syntax

profile(IDE Obj,type,action,timeout)

IDEs

This function supports the following IDEs:

* Analog Devices VisualDSP++

+ Texas Instruments Code Composer Studio v3

Description

Use profile(IDE Obj,type,action,timeout) to generate real-time execution or
stack profiling report.

Create the IDE_0Obj IDE handle object using a constructor function before you use the
profile method.

The type argument determines the type of profile to generate. The following types are
available for the IDEs specified.

CCS IDE VisualDSP++ IDE
"execution” — Execution Yes Yes
profiling
"stack”— Stack profiling Yes Yes

To get a real-time task execution profile report in HTML and graphical plot forms, set
the type argument to "execution”™ and omit the action argument, which defaults to

1-389

1 Alphabetical List

1-390

"report”. For more information, see “Perform Execution-Time Profiling for IDE and
Toolchain Targets”.

To prepare the stack memory on the processor for profiling, set the type argument to
"stack”, and set the action argument to "setup”. This action writes a repetitive
series of known values to the stack memory. For more information, see “Perform Stack
Profiling with IDE and Toolchain Targets”.

After preparing the stack memory, to measure and report the percentage of stack usage,
set the type argument to "stack”, and set the action argument to "report”.

If you omit the action argument, action defaults to "report”.

The optional timeout argument determines the number of seconds MATLAB waits for
the IDE to finish profiling before returning an error. If you omit the timeout argument,
the open method uses the timeout property of the IDE handle object (IDE_Obj) instead.

Note: You can use real-time task execution profiling with hardware only. Simulators do
not support the profiling feature.

Examples

To use profile to assess how your program executes in real-time, complete the
following tasks with a Simulink model:

Open the model configuration parameters (Ctrl+ E).

Select the Coder Target pane.

Under the Tool Chain Automation tab, enable Profile real-time execution.

B W N —

Build your model.
bui ld(IDE_0bj)
5 Load your program to the processor.

load(IDE_Obj,"c:\work\sumdiff.out")

6 For stack profiling, initialize the stack to a known state. (For execution profiling,
skip this step.)

profile(IDE _0Obj,"stack", "setup™)

profile

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For C6000 processors, the pattern is A5. For
C2000™ and C5000 processors, the pattern is A5A5 to account for the address size.
As long as your application does not write the same pattern to the system stack,
profile can report the stack usage.

7 Run the program on the processor.

run(IDE_Obj)

8 Stop the running program.

hal t(IDE_Obj)

9 To get the profiling reports enter one of the following commands:

profile(IDE_Obj,"stack", "report™) #Get stack profiling report
profile(IDE_Obj,"execution®™) #Get execution profiling report

The HTML report contains the sections described in the following table.

Section Heading

Description

Worst case task turnaround
times

Maximum task turnaround time for each task since model
execution started.

Maximum number of
concurrent overruns for
each task

Maximum number of concurrent task overruns since
model execution started.

Analysis of profiling data
recorded over nnn seconds.

Profiling data was recorded over nnn seconds. The
recorded data for task turnaround times and task
execution times is presented in the table following this
heading.

Task turnaround time 1s the elapsed time between starting and finishing the task. If the
task is not preempted, task turnaround time equals the task execution time.

Task execution time is the time between task start and finish when the task is actually
running. It does not include time during which the task may have been preempted by

another task.

Note: Task execution time cannot be measured directly. Task profiling infers the
execution time from the task start and finish times, and the intervening periods during
which the task was preempted by another task.

1-391

1 Alphabetical List

1-392

The execution time calculations do not account for processor time consumed by the
scheduler while switching tasks. In cases where preemption occurs, the reported task
execution times overestimate the true task execution time.

Task overruns occur when a timer task does not complete before the same task is
scheduled to run again. Depending on how you configure the real-time scheduler, a task
overrun may be handled as a real-time failure. Alternatively, you might allow a small
number of task overruns to accommodate cases where a task occasionally takes longer
than normal to complete. If a task overrun occurs, and the same task is scheduled to run
again before the first overrun has been cleared, concurrent task overruns are said to have
occurred.

See Also

load | run

Introduced in R2011a

read

read

Read data from processor memory

Syntax

mem = read(IDE Obj,address)

mem read(IDE Obj,..,datatype)
mem read(IDE_Obj,..,count)

mem = read(IDE Obj,..,memorytype)

IDEs

This function supports the following IDEs:
* Analog Devices VisualDSP++

* Texas Instruments Code Composer Studio v3

Description

mem = read(IDE Obj ,address) returns a block of data values from the memory space
of the processor referenced by I1DE_Obj. The block to read begins from the DSP memory
location given by the address argument. The data is read starting from address
without regard to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of a memory address
in the processor. The full memory address consist of two parts:

* The start address
* The memory type

You can define the memory type value can be explicitly using a numeric vector
representation of the address.

Alternatively, the IDE_Obj object has a default memory type value that is applied if the
memory type value is not explicitly incorporated in the passed address parameter. In

1-393

1 Alphabetical List

1-394

DSP processors with only a single memory type, it is possible to specify addresses using
the abbreviated (implied memory type) format by setting the 1DE_ObJ object memory
type value to zero.

Note: You cannot read data from processor memory while the processor is running.

Provide the address argument either as a numerical value that is a decimal
representation of the DSP memory address, or as a character vector that read converts
to the decimal representation of the start address. (Refer to function hex2dec in the
MATLAB Function Reference. read uses hex2dec to convert the hexadecimal character
vector to a decimal value).

The examples in the following table show how read uses the address parameter.

address Parameter Value Description

131082 Decimal address specification. The memory start address
is 131082 and memory type is 0. This action is the same as
specifying [131082 0].

[131082 1] Decimal address specification. The memory start address is
131082 and memory type is 1.

"2000A" Hexadecimal address specification provided as a character
vector entry. The memory start address is 131082
(converted to the decimal equivalent) and memory type is 0.

It is possible to specify address as a cell array. You can use a combination of numbers
and character vectors for the start address and memory type values. For example, the
following are valid addresses from cell array myaddress:

myaddressl myaddressl{1l} = 131072; myadddress1{2} = "Program(PM)
Memory*® ;

myaddress2 myaddress2{1} = "200007; myadddress2{2} = "Program(PM)
Memory* ;

myaddress3 myaddress3{1} = 131072; myaddress3{2} = O;

mem = read(IDE Obj,..,datatype) where the input argument datatype defines the
interpretation of the raw values read from DSP memory. Parameter datatype specifies

read

the data format of the raw memory image. The data is read starting from address
without regard to data type alignment boundaries in the processor. The byte ordering

defined by the data type is automatically applied. This syntax supports the following
MATLAB data types.

MATLAB Data Type Description

double IEEE double-precision floating point value

single IEEE single-precision floating point value

uint8 8-bit unsigned binary integer value

uintlé 16-bit unsigned binary integer value

uint32 32-bit unsigned binary integer value

int8 8-bit signed two's complement integer
value

intl6 16-bit signed two's complement integer
value

int32 32-bit signed two's complement integer
value

The read method does not coerce data type alignment. Some combinations of address
and datatype will be difficult for the processor to use.

mem = read(IDE Obj,..,count) adds the count input parameter that defines the
dimensions of the returned data block mem. To read a block of multiple data values.
Specify count to determine how many values to read from address. count can be a
scalar value that causes read to return a column vector that has count values. You can
perform multidimensional reads by passing a vector for count. The elements in the input
vector of count define the dimensions of the returned data matrix. The memory is read

in column-major order. count defines the dimensions of the returned data array mem as
shown in the following table.

* n — Read n values into a column vector.

[m,n] — Read m-by-n values into m by n matrix in column-major order.

[m,n,...] — Read a multidimensional matrix m-by-n-by...of values into an m-by-n-
by...array.

To read a block of multiple data values, specify the input argument count that
determines how many values to read from address.

1-395

1 Alphabetical List

1-396

mem = read(IDE 0Obj,..,memorytype) adds an optional input argument memorytype.
Object IDE_Obj has a default memory type value 0 that read applies if the memory type
value is not explicitly incorporated into the passed address parameter.

In processors with only a single memory type, it is possible to specify addresses using the
implied memory type format by setting the IDE_Ob jmemorytype property value to zero.

Examples

This example reads one 16-bit integer from memory on the processor.

mlvar = read(IDE_O0Obj,131072,"intl6")
131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command returns 100 32-bit
integers from the address 0x20000 and plots the result in MATLAB.

data = read(IDE_Obj,"20000", "int32",100)
plot(double(data))

See Also

write

Introduced in R2011a

readmat

readmat

Matrix of data from RTDX channel

Note: Support for readmat on C5000 processors will be removed in a future version.

Syntax

data
data

readmat(rx,channelname, "datatype”,siz, timeout)
readmat(rx,channelname, "datatype”,siz)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

data = readmat(rx,channelname, "datatype”,siz,timeout) reads a matrix of
data from an RTDX channel configured for read access. datatype defines the type of
data to read, and channelname specifies the queue to read. readmat reads the desired
data from the RTDX link specified by rx.

Before you read from a channel, open and enable the channel for read access.

Replace channelname with the character vector you specified when you opened the
desired channel. channelname must identify a channel that you defined in the program
loaded on the processor.

You cannot read data from a channel you have not opened and configured for read access.
To determine which channels exist for the loaded program, use the RTDX tools provided
in the IDE.

1-397

1 Alphabetical List

1-398

data contains a matrix whose dimensions are given by the input argument vector siz,
where siz can be a vector of two or more elements. To operate, the number of elements
in the output matrix data must be an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages from the
specified channel until the output matrix is full or the global timeout period specified in
rx elapses.

Caution If the timeout period expires before the output data matrix is fully populated,
you lose the messages read from the channel to that point.

MATLAB software supports reading five data types with readmat.

datatype Value Data Format

"double” Double-precision floating point values. 64 bits.
"intle" 16-bit signed integers

"Int32° 32-bit signed integers

"single” Single-precision floating point values. 32 bits.
"uint8* Unsigned 8-bit integers

data = readmat(rx,channelname, "datatype”,siz) reads a matrix of data from
an RTDX channel configured for read access. datatype defines the type of data to read,
and channelname specifies the queue to read. readmat reads the desired data from the
RTDX link specified by rx.

Examples

In this data read and write example, you write data to the processor through the
IDE. You can then read the data back in two ways — either through read or through
readmsg.

To duplicate this example you need to have a program loaded on the processor. The
channels listed in this example, ichannel and ochannel, must be defined in the loaded
program. If the current program on the processor defines different channels, replace the
listed channels with your current ones.

readmat

IDE_Obj = ticcs;
rx = rtdx(IDE_Obj);
open(rx, "ichannel ", "w");
enable(rx, "ichannel ") ;
open(rx, "ochannel®,"r");
enable(rx, "ochannel ") ;
indata = 1:25; % Set up some data.
write(IDE_Obj,0,indata,30);
outdata = read(IDE_Obj,0,"double”,25,10)
outdata =
Columns 1 through 13
1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25
14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat(“ochannel®,*double®,[5 5])

See Also

readmsg | writemsg

Introduced in R2011a

1-399

1 Alphabetical List

1-400

readmsg

Read messages from specified RTDX channel

Note: Support for readmsg on C5000 processors will be removed in a future version.

Syntax

data = readmsg(rx,channelname, "datatype”,siz,nummsgs, timeout)

data = readmsg(rx,channelname, "datatype”,siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)

data = readmsg(rx,channelname,datatype)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

data = readmsg(rx,channelname, "datatype”,siz,nummsgs, timeout) reads
nummsgs from a channel associated with rx. channe lname identifies the channel queue,
which must be configured for read access. Each message is the same type, defined by
datatype. nummsgs can be an integer that defines the number of messages to read from
the specified queue, or all to read the messages present in the queue when you call the
readmsg function.

Each read message becomes an output matrix in data, with dimensions specified by the
elements in vector siz. For example, when siz is [m n], reading 10 messages (nummsgs
equal 10) creates 10 m-by-n matrices in data. Each output matrix in data must have the
same number of elements (m x N) as the number of elements in each message.

readmsg

You must specify the type of messages you are reading by including the datatype
argument. datatype supports character vectors that define the type of data you are
expecting, as shown in the following table.

datatype Value Specified Data Type

"double*® Floating point data, 64-bits (double-precision).
"intl6e" Signed 16-bit integer data.

"int32° Signed 32-bit integers.

"single” Floating-point data, 32-bits (single-precision).
"uint8- Unsigned 8-bit integers.

When you include the timeout input argument in the function, readmsg reads
messages from the specified queue until it receives nummsgs, or until the period defined
by timeout expires while readmsg waits for more messages to be available.

When the desired number of messages is not available in the queue, readmsg enters a
wait loop and stays there until more messages become available or timeout seconds
elapse. The timeout argument overrides the global timeout specified when you create
rx.

data = readmsg(rx,channelname, "datatype”,siz,nummsgs) reads nummsgs
from a channel associated with rx. channelname identifies the channel queue,

which must be configured for read access. Each message is the same type, defined by
datatype. nummsgs can be an integer that defines the number of messages to read from
the specified queue, or al l to read the messages present in the queue when you call the
readmsg function.

Each read message becomes an output matrix in data, with dimensions specified by the
elements in vector siz. When siz is [m n], reading 10 messages (nummsgs equal 10)
creates 10 n-by-m matrices in data.

Each output matrix in data must have the same number of elements (m x n) as the
number of elements in each message.

You must specify the type of messages you are reading by including the datatype

argument. datatype supports six character vectors that define the type of data you are
expecting.

1-401

1 Alphabetical List

1-402

data = readmsg(rx,channelname,datatype,siz) reads one data message because
nummsgs defaults to one when you omit the input argument. readmsgs returns the
message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the number of
messages defined by nummsgs. data becomes a cell array of row matrices, data =
{msgl,msg2, . ..,msg(nummsgs)}, because siz defaults to [1,nummsgs]; each
returned message becomes one row matrix in the cell array.

Each row matrix contains one element for each data value in the current message msg#
= [element(1l), element(2),...,element(l)] where I is the number of data
elements in message. In this syntax, the read messages can have different lengths,
unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data message, returning a
row vector in data. The optional input arguments—nummsgs, siz, and timeout—use
their default values.

In the calling syntaxes for readmsg, you can set Siz and nummsgs to empty matrices,
causing them to use their default values—nummsgs = 1 and siz = [1,1], where 1 is the
number of data elements in the read message.

Cavution If the timeout period expires before the output data matrix is fully populated,
you lose the messages read from the channel to that point.

Examples

IDE_Obj = ticcs;

rx = rtdx(IDE_Obj);

open(rx, "ichannel®,*w");

enable(rx, "ichannel*);

open(rx, "ochannel®,"r");

enable(rx, "ochannel *);

indata = 1:25; % Set up some data.
write(IDE_Obj,0,indata,30);

outdata = read(IDE_Obj,0,"double”,25,10)

outdata =
Columns 1 through 13
1 2 3 4 5 6 7 8 9 10 11 12 13
Columns 14 through 25
14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called out_array.

readmsg

number_msgs = msgcount(rx, “ochannel®) % Check number of msgs
% in read queue.
out_array = rtdx(IDE_Obj).readmsg(“ochannel*, “double®,[4 5])

See Also

read | readmat | writemsg

Introduced in R2011a

1-403

1 Alphabetical List

register

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Register objective

Syntax

register(obj)

Description

register(obj) registers obj Register and add obj to the end of the list of available
objectives that you can use with the Code Generation Advisor.

Input Arguments
obj Handle to a code generation objective object previously created.
Examples

Register the objective:

register(obj);

See Also

Topics
“Create Custom Code Generation Objectives’
“Registering Customizations” (Simulink)

o

1-404

registerCFunctionEntry

registerCFunctionEntry

Create function entry based on specified parameters and register in code replacement
table

Syntax

entry = registerCFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

Input Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW.TFfITable.

priority
Positive integer specifying the function entry's search priority, 0-100, relative to
other entries of the same function name and conceptual argument list within this
table. Highest priority is 0, and lowest priority is 100. If the table provides two

implementations for a function, the implementation with the higher priority will
shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.
functionName

Character vector specifying the name of the function to be replaced. The name
must match a function name listed in “Code You Can Replace” in “What Is Code
Replacement Customization?” (MATLAB code) or “What Is Code Replacement
Customization?” (Simulink models).

inputType

Character vector specifying the data type of the input arguments, for example,
"double®. (This function requires that the input arguments are of the same type.)

1-405

1 Alphabetical List

1-406

implementationName

Character vector specifying the name of your implementation. For example, if
functionName is "sqrt”, implementationName can be "sqrt” or a different
name of your choosing.

outputType
Character vector specifying the data type of the return argument, for example,
"double-”.

headerFile

Character vector specifying the header file in which the implementation function is
declared, for example, "<math_h>".

genCallback
Character vector specifying " * or "RTW.copyFileToBui ldDir". If you specify
"RTW.copyFileToBuildDir", and if this function entry is matched and used, the
function RTW.copyFileToBui IdDir will be called after code generation to copy
additional header, source, or object files that you have specified for this function
entry to the build directory. For more information, see “Specify Build Information for
Replacement Code”.

genFileName

Character vector specifying " *. (This argument is for use only by MathWorks
developers.)

Output Arguments

Handle to the created code replacement function entry. Specifying the return argument
in the registerCFunctionEntry function call is optional.

Description

The registerCFunctionEntry function provides a quick way to create and register a
code replacement function entry. This function can be used only if your function entry
meets the following conditions:

* The input arguments are of the same type.

* The input argument names and the return argument name follow the default
Simulink naming convention:

registerCFunctionEntry

* For input argument names, ul, u2, ..., un

* For return argument, y1

Examples

In the following example, the registerCFunctionEntry function is used to create a
function entry for sqrt in a code replacement table.

hLib = RTW.TfITable;

hLib.registerCFunctionEntry(100, 1, "sqrt®, "double®, “sqrt", ...
"double®, "<math.h>", "=, "");

See Also

registerCPromotableMacroEntry

Topics
“Define Code Replacement Mappings’

i

Introduced in R2008a

1-407

1 Alphabetical List

1-408

registerCPPFunctionEntry

Create C++ function entry based on specified parameters and register in code
replacement table

Syntax

entry = registerCPPFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName,
nameSpace)

Input Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW._TflITable.

priority

Positive integer specifying the function entry's search priority, 0-100, relative to
other entries of the same function name and conceptual argument list within this
table. Highest priority is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the higher priority will
shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.
functionName

Character vector specifying the name of the function to be replaced. The name must
match a function listed in “Code You Can Replace from MATLAB Code” or “Code You
Can Replace From Simulink Models”.

inputType

Character vector specifying the data type of the input arguments, for example,
"double”. (This function requires that the input arguments are of the same type.)

registerCPPFunctionEntry

implementationName

Character vector specifying the name of your implementation. For example, if
functionName is "sqrt”, implementationName can be "sqrt” or a different
name of your choosing.

outputType

Character vector specifying the data type of the return argument, for example,
"double®”.

headerFile

Character vector specifying the header file in which the implementation function is
declared, for example, "<math_h>".

genCallback

Character vector specifying " " or "RTW.copyFileToBui ldDir". If you specify
"RTW.copyFileToBuildDir", and if this function entry is matched and used, the
function RTW.copyFileToBui IdDir will be called after code generation to copy
additional header, source, or object files that you have specified for this function
entry to the build directory. For more information, see “Specify Build Information for
Replacement Code”.

genFileName

Character vector specifying " *. (This argument is for use only by MathWorks
developers.)

nameSpace

Character vector specifying the C++ namespace in which the implementation
function is defined. If this function entry is matched, the software

emits the namespace in the generated function code (for example,
std::sin(tfl_cpp_U.Inl)). If you specify " ", the software does not emit a
namespace designation in the generated code.

Output Arguments

Handle to the created C++ function entry. Specifying the return argument in the
registerCPPFunctionEntry function call is optional.

1-409

1 Alphabetical List

1-410

Description

The registerCPPFunctionEntry function provides a quick way to create and register
a code replacement C++ function entry. This function can be used only if your C++
function entry meets the following conditions:
* The input arguments are of the same type.
* The input argument names and the return argument name follow the default
Simulink naming convention:
* For input argument names, ul, u2, ..., un

* For return argument, y1

Note: When you register a code replacement library containing C++ function entries, you
must specify the value {"C++"} for the LanguageConstraint property of the library
registry entry. For more information, see “Register Code Replacement Mappings”.

Examples

In the following example, the registerCPPFunctionEntry function is used to create a
C++ function entry for sin in a code replacement table.

hLib = RTW.TflTable;

hLib.registerCPPFunctionEntry(100, 1, "sin®, “single”, "sin", ...
"single”, "cmath®, **, "7, "std");

See Also

enableCPP | setNameSpace

Topics
“Define Code Replacement Mappings”

Introduced in R2010a

registerCPromotableMacroEntry

registerCPromotableMacroEntry

Create promotable code replacement macro entry based on specified parameters and
register in code replacement table (for abs function replacement only)

Syntax

entry = registerCPromotableMacroEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

Input Arguments

hTable

Handle to a code replacement table previously returned by hTable =
RTW.TfITable.

priority

Positive integer specifying the function entry's search priority, 0-100, relative to
other entries of the same function name and conceptual argument list within this
table. Highest priority is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the higher priority will
shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.
functionName

Character vector specifying the name of the function to be replaced. Specify "abs”.
(This function should be used only for abs function replacement.)

inputType

Character vector specifying the data type of the input arguments, for example,
"double®. (This function requires that the input arguments are of the same type.)

implementationName

1-411

1 Alphabetical List

1-412

Character vector specifying the name of your implementation. For example,
assuming functionName is "abs", implementationName can be "abs” or a
different name of your choosing.

outputType
Character vector specifying the data type of the return argument, for example,
"double”.

headerFile
Character vector specifying the header file in which the implementation function is
declared, for example, "<math.h>".

genCallback

Character vector specifying " " or "RTW.copyFileToBui ldDir". If you specify
"RTW.copyFileToBuildDir", and if this function entry is matched and used, the
function RTW.copyFileToBui IdDir will be called after code generation to copy
additional header, source, or object files that you have specified for this function
entry to the build directory. For more information, see “Specify Build Information for
Replacement Code”.

genFileName

Character vector specifying " *. (This argument is for use only by MathWorks
developers.)

Output Arguments

Handle to the created promotable macro entry. Specifying the return argument in the
registerCPromotableMacroEntry function call is optional.

Description

The registerCPromotableMacroEntry function creates a promotable macro entry
based on specified parameters and registers the entry in the code replacement table. A
promotable macro entry will promote the output data type based on the target word size.

This function provides a quick way to create and register a promotable macro entry. This
function can be used only if your code replacement function entry meets the following
conditions:

* The input arguments are of the same type.

registerCPromotableMacroEntry

* The input argument names and the return argument name follow the default
Simulink naming convention:

For input argument names, ul, u2, ..., un

* For return argument, y1

Note: This function should be used only for abs function replacement. Other functions
supported for replacement should use registerCFunctionEntry.

Examples

In the following example, the registerCPromotableMacroEntry function is used to
create a function entry for abs in a code replacement table.

hLib = RTW.TfITable;

hLib.registerCPromotableMacroEntry(100, 1, “"abs®, “"double®, "abs_prime", ...
“double®, "<math_prime.h>", **, *%);

See Also

registerCFunctionEntry

Topics
“Define Code Replacement Mappings”

Introduced in R2008a

1-413

1 Alphabetical List

1-414

regread

Values from processor registers

Syntax

reg = regread(IDE Obj,"regname”, "represent”,timeout)
reg regread(IDE_Obj ,"regname®, “"represent”)
reg = regread(IDE 0Obj,"regname®)

IDEs

This function supports the following IDEs:

+ Texas Instruments Code Composer Studio v3

Description

reg = regread(IDE_Obj,"regname”, "represent”,timeout) reads the data value
in the regname register of the target processor and returns the value in reg as a double-
precision value. For convenience, regread converts each return value to the MATLAB
double datatype. Making this conversion lets you manipulate the data in MATLAB.
Character vector regname specifies the name of the source register on the target. The
IDE handle, IDE_Obj, defines the target to read from. Valid entries for regname depend
on your target processor.

Note: regread does not read 64-bit registers, like the cycle register on Blackfin
processors.

Register names are not case-sensitive — a0 is the same as AO.

For example, MPC5500 processors provide the following register names that are valid
entries for regname.

regread

Register Names Register Contents

acc Accumulator A register

sprg0 through sprg7 SPR registers

For example, TMS320C6xxx processors provide the following register names that are
valid entries for regname.

Register Names Register Contents

A0, Al, A2,..., A15 General purpose A registers

BO, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, CSR Other general purpose 32-bit registers
Al1:AO0, A2:A1,...,,B15:B14 64-bit general purpose register pairs

Note: Use read (called a direct memory read) to read memory-mapped registers.

The represent input argument defines the format of the data stored in regname. Input
argument represent takes one of three input character vectors.

represent Value Description

"2scomp*® Source register contains a signed integer value in two's
complement format. This is the default setting when you omit
the represent argument.

"binary” Source register contains an unsigned binary integer.

"leee” Source register contains a floating point 32-bit or 64-bit value
in IEEE floating-point format. Use this only when you are
reading from 32 and 64 bit registers on the target.

To limit the time that regread spends transferring data from the target processor,
the optional argument timeout tells the data transfer process to stop after timeout
seconds. timeout is defined as the number of seconds allowed to complete the read
operation. You might find this useful for limiting prolonged data transfer operations.
If you omit the timeout argument, regread defaults to the global time-out defined in
IDE_Obj.

1-415

1 Alphabetical List

1-416

reg = regread(IDE Obj,"regname”, "represent®) does not set the global time-out
value. The time-out value in IDE_Obj applies.

reg = regread(IDE_Obj, "regname™) does not define the format of the data in
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the registers which hold
their value are not dedicated to storing just the variable values.

Registers are used as temporary storage locations during execution. When this
temporary storage process occurs, the value of the variable is temporarily stored
somewhere on the stack and returned later. Therefore, getting the values of register
variables during program execution may return unexpected answers.

Values that you write to register variables and local variables during intermediate times
in program operation may not get reflected in the register.

To see if the result is consistent, write a line of code that uses the variable. For example:

register int a = 100;
int b;

b=a+ 2;

Reading the register assigned to a may return an incorrect value for a but if b returns
the expected 102 result, nothing is wrong with the code or the software.

Examples

For CCS IDE

For the Chxxx processor family, most registers are memory-mapped and consequently
are available using read and write. However, use regread to read the PC register.

The following command shows how to read the PC register. To identify the processor,
IDE_Obj is a link for CCS IDE.

regread(IDE_Obj,"PC","binary®)

regread

To tell MATLAB software what datatype you are reading, the character vector "binary*
indicates that the PC register contains a value stored as an unsigned binary integer.

In response, MATLAB software displays
ans =
33824

For processors in the C6xxx family, regread lets you access processor registers directly.
To read the value in general purpose register A0, type the following function.

treg = regread(IDE_Obj,"A0","2scomp™);
treg now contains the two's complement representation of the value in AO.
Now read the value stored in register B2 as an unsigned binary integer, by typing

regread(IDE Obj,"B2","binary”);

See Also

read | regwrite | write

Introduced in R2011a

1-417

1 Alphabetical List

regwrite

Write data values to registers on processor

Syntax

regwrite(IDE_Obj,"regname”,value, "represent”,timeout)
regwrite(IDE Obj,"regname* ,value, "represent”)
regwrite(IDE Obj,"regname*,value,)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

regwrite(IDE Obj,"regname” ,value, "represent”,timeout) writes the data
in value to the regname register of the target processor. regwrite converts value
from its representation in the MATLAB workspace to the representation specified by
represent. The represent input argument defines the format of the data when it
is stored in regname. Input argument represent takes one of three input character

vectors.

represent Value Description

"2scomp*” Write value to the destination register as a signed
integer value in two's complement format. This is the
default setting when you omit the represent argument.

"binary*” Write value to the destination register as an unsigned
binary integer.

“leee” Write value to the destination registers as a floating point
32-bit or 64-bit value in IEEE floating-point format. Use
this only when you are writing to 32- and 64-bit registers
on the target.

1-418

regwrite

Note: Use write to write memory-mapped registers. This action is also called a direct
memory write.

Character vector regname specifies the name of the destination register on the target.
IDE handle, IDE_ObjJ defines the target to write value to. Valid entries for regname
depend on your target processor. Register names are not case-sensitive — a0 is the same
as AO.

For example, MPC5500 processors provide the following register names that are valid
entries for regname.

Register Names Register Contents

acc Accumulator A register

sprg0 SPR registers

For example, C6xxx processors provide the following register names that are valid
entries for regname.

Register Names Register Contents

AQ, A1, A2,..., A15 General purpose A registers

BO, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, Other general purpose 32-bit registers
AMR, CSR

Al1:A0, A2:Al,..., B15:B14 |64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation for your target
processor to determine the registers for the processor.

To limit the time that regwrite spends transferring data to the target processor,
the optional argument timeout tells the data transfer process to stop after timeout
seconds. timeout is defined as the number of seconds allowed to complete the write
operation. You might find this useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite defaults to the global
time-out defined in IDE_Obj. If the write operation exceeds the time specified, regwrite
returns with a time-out error. Generally, time-out errors do not stop the register write
process. The write process stops while waiting for the IDE to respond that the write
operation is complete.

1-419

1 Alphabetical List

1-420

regwrite(IDE Obj,"regname”,value, "represent”) omits the timeout input
argument and does not change the time-out value specified in IDE_Obj.

regwrite(IDE Obj,"regname”,value,) omitsthe represent input argument.

Writing the data does not reformat the data written to regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the registers which hold
their value are not dedicated to storing just the variable values.

Registers are used as temporary storage locations during execution. When this
temporary storage process occurs, the value of the variable is temporarily stored
somewhere on the stack and returned later. Therefore, getting the values of register
variables during program execution may return unexpected answers.

Values that you write to register variables and local variables during intermediate times
in program operation may not get reflected in the register.

To see if the result is consistent, write a line of code that uses the variable. For example:

register int a = 100;
int b;

b=a+ 2;

Reading the register assigned to a may return an incorrect value for a but if b returns
the expected 102 result, nothing is wrong with the code or the software.

Examples
To write a new value to the PC register on a C5xxx family processor, enter
regwrite(IDE_Obj,"pc”,hex2dec("100%), "binary")

specifying that you are writing the value 256 (the decimal value of 0x100) to register pc
as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following syntax specifies
the value as a character vector, representation, and target registers.

regwrite

regwrite(IDE_Obj,"bl:b0",hex2dec("1010"), "ieee™)

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also

read | regread | write

Introduced in R2011a

1-421

1 Alphabetical List

1-422

reload

Reload most recent program file to processor signal processor

Syntax

S
S

reload(IDE _Obj ,timeout)
reload(IDE_Obj)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

s = reload(IDE Obj,timeout) resends the most recently loaded program file to the
processor. If you have not loaded a program file in the current session (so there is no
previously loaded file), reload returns the null entry [] in s indicating that it could
not load a file to the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after an event produces changes in your processor
memory, use reload to restore the program file to the processor for execution.

To limit the time the IDE spends trying to reload the program file to the processor,
timeout specifies how long the load process can take. If the load process exceeds the
timeout limit, the IDE stops trying to load the program file and returns an error stating
that the time period expired. Exceeding the allotted time for the reload operation usually
indicates that the reload was complete but the IDE did not receive confirmation before
the timeout period passed.

s = reload(IDE_Obj) reloads the most recent program file, using the timeout value
set when you created link IDE_Ob], the global timeout setting.

reload

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the reloading function
for each processor represented by IDE_Obj, reloading the most recently loaded program
on each processor.

This action is the same as calling reload for each processor individually through IDE
handle objects for each one.

Examples

After you create an object that connects to the IDE, use the available methods to reload
your most recently loaded project. If you have not loaded a project in this session, reload
returns an error and an empty value for s. Loading a project eliminates the error. First,
create an IDE handle object, such as IDE_Obj, using the constructor for your IDE.

s = reload(IDE_Obj,23)

Warning: No action taken - load a valid Program file before

you reload. ..

S =
open((IDE_Obj,"D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt~", "project”)
bui ld(IDE_Obj)

load(IDE_Obj,"hellodsp.pjt™) #This file extension varies by IDE
halt(IDE_Obj)

s = reload(IDE_Obj,23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also

cd | load | open

Introduced in R2011a

1-423

1 Alphabetical List

1-424

remove

Remove file, project, or breakpoint

Syntax

remove(IDE Obj,filename,filetype)
remove(IDE_Obj ,addr,debugtype,timeout)
remove(IDE Obj,filename,line,debugtype,timeout)
remove(IDE Obj,all,break)

IDEs

This function supports the following IDEs:
Analog Devices VisualDSP++

Texas Instruments Code Composer Studio v3

Description

remove(IDE Obj,filename,filetype) deletes a file from the active project in the
IDE or deletes the project.

remove(IDE_Obj ,addr,debugtype,timeout) removes a debug point from an address
in the program.

remove(IDE Obj,filename,line,debugtype,timeout) removes a debug point from
a line in a source file.

remove(IDE Obj,all,break) removes the breakpoints and waits for completion.

Input Arguments
IDE_Obj

Enter the name of the IDE link handle for your IDE. Create an IDE link handle before
you use the remove method. .

remove

filename

Replace filename with the name of the file you are removing, or the source file from
which you are removing debug points. If the file is not located in the active project,
MATLAB returns a warning instead of completing the action.

Filetype

To remove a project, enter "project”. To remove a source file, enter "text”.
Default: " text*

addr

Enter the memory address of the debug point. Enter "all” to remove the breakpoints.
debugtype

Enter the type of debug point to remove. The IDE provide several types of debug points.
Refer to the IDE help documentation for information on their respective behavior.

Default: "break” (breakpoint)

line

Enter the line number of the debug point located in a file.
timeout

Enter a time limit, in seconds, for the method to complete an action.

Examples

After you have a project in the IDE, you can delete files from it using remove from the
MATLAB software command line. For example, build a project and load the resulting
-out file. With the project build complete, load your .out file by typing

load(IDE Obj,"filename.out™)

Now remove one file from your project

remove(IDE_Obj,"Ffilename™)

1-425

1 Alphabetical List

You see in the IDE that the file no longer appears.

See Also

add | cd | open

Introduced in R2011a

1-426

removelnheritedCheck

removelnheritedCheck

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Remove inherited checks

Syntax

removelnheritedCheck(obj, checkID)

Description

removelnheritedCheck(obj, checkID) removes an inherited check from the
objective definition. Use this method when you create a new objective from an existing
objective.

When the user selects multiple objectives, if another selected objective includes this
check, the Code Generation Advisor displays the check.

Input Arguments

obj Handle to a code generation objective object previously created.

checkID Unique identifier of the check that you remove from the new
objective.

Examples

Remove the Identify questionable code instrumentation (data I/0) check from the
objective.

remove InheritedCheck(obj, "mathworks.codegen.Codelnstrumentation®);

)

1-427

1 Alphabetical List

See Also

Simulink.ModelAdvisor

Topics
“Create Custom Code Generation Objectives”
“About IDs” (Simulink)

1-428

removelnheritedParam

removelnheritedParam

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Remove inherited parameters

Syntax

removelnheritedParam(obj, paramName)

Description

removelnheritedParam(obj, paramName) removes an inherited parameter from this
objective. Use this method when you create a new objective from an existing objective.

When the user selects multiple objectives, if another objective includes the parameter,
the Code Generation Advisor reviews the parameter value using Check model
configuration settings against code generation objectives.

Input Arguments

obj Handle to a code generation objective object previously created.
paramName Parameter that you want to remove from the objective.
Examples

Remove DefaultParameterBehavior from the objective.

removelnheritedParam(obj, "DefaultParameterBehavior®);

See Also

get_param

1-429

1 Alphabetical List

Topics
“Create Custom Code Generation Objectives”

1-430

report

report

Open code execution profiling report and specify display of time measurements.

Syntax

report(myExecutionProfile)

report(myExecutionProfile, Namel, Valuel, Name2, Value2, ...)
report(myExecutionProfile, "Units®, "Seconds®, "ScaleFactor”,
"le-06", “NumericFormat®, “%0.3f")

Description

When you run a SIL or PIL simulation with code execution profiling, the software
generates the workspace variable myExecutionProfile, specified in Configuration
Parameters > Code Generation > Verification > Workspace variable.

report(myExecutionProfile) opens the code execution profiling report using default
display options.

report(myExecutionProfile, Namel, Valuel, Name2, Value2, ...) opens
the report with display options specified by the name-value character vector pairs.

report(myExecutionProfile, "Units", "Seconds®, "ScaleFactor-,

"1e-06", “NumericFormat®, "%0.3f") displays time in microseconds (10 seconds)
with a precision of three decimal places.

Name-Value Pair Details
"Units", "Seconds” or Time measurements displayed in seconds or timer
"Units”", "Ticks" ticks.

Default:

+ SIL simulation on Windows — Seconds
+ SIL simulation on non-Windows — Timer ticks

+ PIL simulation — Seconds, if number of timer
ticks per second has been specified by the target
connectivity configuration. Otherwise, ticks.

1-431

1 Alphabetical List

1-432

Name-Value Pair

Details

"ScaleFactor”, Value

Scale factor for displayed measurements. For
example, to display measurements in microseconds,
use the name-value pair "ScaleFactor®, "1le-6".

Value must be a character vector representation of
a number that is a power of 10. For example, "1°,
"le-6", or "1e-9". Default value is "1e-9".

To specify the scale factor, you must also specify
"Units", "Seconds”.

"NumericFormat”,
Convention

Numeric format for displayed measurements. Use the

decimal convention utilized by the ANSI® C function
sprintf, for example, "%1.2F". Default is "%0.0F".

To specify the numeric format, you must also specify
"Units”", "Seconds”.

See Also

annotate | display

Topics

“Code Execution Profiling with SIL and PIL”
“View and Compare Code Execution Times”

Introduced in R2011b

report

report

Open code execution profiling report and specify display of time measurements.

Syntax

report(myExecutionProfile)
report(myExecutionProfile, Namel, Valuel, Name2, Value2, ...)

report(myExecutionProfile, "Units", "Seconds®, "ScaleFactor”,
"1e-06", "NumericFormat®, "%0.3f")

Description

report(myExecutionProfile) opens the code execution profiling report using default
display options.

report(myExecutionProfile, Namel, Valuel, Name2, Value2, ...) opens
the report with display options specified by the name-value character vector pairs.

report(myExecutionProfile, "Units®, "Seconds®, "ScaleFactor”,

"le-06", "NumericFormat®, "%0.3Ff") displays time in microseconds (10° seconds)
with a precision of three decimal places.

myExecutionProfile is a workspace variable that you create using
getCoderExecutionProfile.

Name-Value Pair Details
"Units", "Seconds” or Time measurements displayed in seconds or timer
"Units", "Ticks" ticks.

Default:

+ SIL execution on Windows — Seconds
+ SIL execution on non-Windows — Timer ticks

* PIL execution — Seconds, if number of timer
ticks per second has been specified by the target
connectivity configuration. Otherwise, ticks.

1-433

1 Alphabetical List

1-434

Name-Value Pair

Details

"ScaleFactor”, Value

Scale factor for displayed measurements. For
example, to display measurements in microseconds,
use the name-value pair "ScaleFactor®, "1le-6".

Value must be a character vector representation of
a number that is a power of 10. For example, "1°,
"le-6", or "1e-9". Default value is "1e-9".

To specify the scale factor, you must also specify
"Units", "Seconds”.

"NumericFormat”,
Convention

Numeric format for displayed measurements. Use the
decimal convention utilized by the ANSI C function
sprintf, for example, "%1.2F". Default is "%0.0F".

To specify the numeric format, you must also specify
"Units", "Seconds”.

See Also

getCoderExecutionProfile | Sections | TimerTicksPerSecond

Topics

“Generate Execution Time Profile”

“Analyze Execution Time Data”

Introduced in R2011b

reset

reset

Stop program execution and reset processor

Syntax

reset(IDE Obj,timeout)

IDEs

This function supports the following IDEs:

+ Analog Devices VisualDSP++

* Texas Instruments Code Composer Studio v3

Description

reset(IDE Obj ,timeout) stops the program executing on the processor and
asynchronously performs a processor reset, returning the processor register contents to
their power-up settings. reset returns immediately after the processor halt.

The optional timeout argument sets the number of seconds MATLAB waits for the

processor to halt. If you omit the timeout argument, timeout defaults to the timeout
value of the IDE handle object.

See Also

halt | load | run

Introduced in R2011a

1-435

1 Alphabetical List

1-436

restart

Reload most recent program file to processor signal processor

Syntax

restart(IDE 0Obj)
restart(IDE _Obj ,timeout)

IDEs

This function supports the following IDEs:

* Texas Instruments Code Composer Studio v3

Description

restart(IDE _0bj) issues a restart command in the IDE debugger. The behavior of the
restart process depends on the processor. Refer to the documentation for your IDE for
details about using restart with various processors.

When IDE_Obj is an array that contains more than one processor, each processor calls
restart in sequence.

restart(IDE_Obj ,timeout) adds the optional timeout input argument. timeout
defines an upper limit in seconds on the period the restart routine waits for completion
of the restart process. If the time-out period is exceeded, restart returns control to
MATLAB with a time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates that the restart
confirmation was not received before the time-out period elapsed.

See Also

halt | isrunning | run

Introduced in R2011a

rflOStreamClose

rtilOStreamClose

Shut down communications channel with remote processor

Syntax

int rtl0StreamClose(int streamlD)

Arguments

streamID
A handle to the stream that was returned by a previous call to rt10StreamOpen.

Description

int rtl0StreamClose(int streamlD) shuts down the communications channel and
cleans up associated resources.

A return value of zero indicates success. RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also

rtl0StreamOpen | rtl0StreamSend | rtlOStreamRecv | rtiostream wrapper

Topics

“Create PIL Target Connectivity Configuration”

“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”
“Configure Processor-In-The-Loop (PIL) for a Custom Target”

Introduced in R2009a

1-437

1 Alphabetical List

1-438

rtilOStreamClose

Shut down communications channel with remote processor

Syntax

int rtl0StreamClose(int streamlD)

Arguments

streamID
A handle to the stream that was returned by a previous call to rt10StreamOpen.

Description

int rtl0StreamClose(int streamlD) shuts down the communications channel and
cleans up associated resources.

A return value of zero indicates success. RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also

rtlOStreamRecv | rtiostream wrapper | rtl10StreamOpen | rt10StreamSend

Topics
“Create PIL Target Connectivity Configuration”

Introduced in R2009a

rtlOStreamOpen

rilOStreamOpen

Initialize communications channel with remote processor

Syntax

int rtlOStreamOpen(int argc,void * argv[1)

Arguments

argc
Integer argument count, i.e., the number of parameters in argv[]
argv[]

An array of pointers to parameters that are character vectors

Description

int rtl0StreamOpen(int argc,void * argv[]) initializes a communication
stream to allow exchange of data between host and target.

The input parameters allows driver-specific parameters to be passed to the
communications driver.

If able to initialize a communication stream, the function returns a nonnegative integer
greater than zero, representing a stream handle. A return value of RTIOSTREAM_ERROR
indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also

rtlOStreamSend | rtlOStreamRecv | rtlOStreamClose | rtiostream_wrapper

1-439

1 Alphabetical List

Topics
“Create PIL Target Connectivity Configuration”

“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”
“Configure Processor-In-The-Loop (PIL) for a Custom Target”

Introduced in R2009a

1-440

rtlOStreamOpen

rilOStreamOpen

Initialize communications channel with remote processor

Syntax

int rtlOStreamOpen(int argc,void * argv[1)

Arguments

argc
Integer argument count, i.e., the number of parameters in argv[]
argv[]

An array of pointers to parameters that are character vectors

Description

int rtl0StreamOpen(int argc,void * argv[]) initializes a communication
stream to allow exchange of data between host and target.

The input parameters allows driver-specific parameters to be passed to the
communications driver.

If able to initialize a communication stream, the function returns a nonnegative integer
greater than zero, representing a stream handle. A return value of RTIOSTREAM_ERROR
indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also

rtlOStreamRecv | rtiostream wrapper | rtl0StreamClose | rtl0OStreamSend

1-441

1 Alphabetical List

Topics
“Create PIL Target Connectivity Configuration”

Introduced in R2009a

1-442

rlOStreamRecv

rHOStreamRecvy

Receive data from remote processor

Syntax

int rtl0OStreamRecv(int streamlD,void * dst,size t size,size t *
sizeRecvd)

Arguments

streamID

A handle to the stream that was returned by a previous call to rt 1I0StreamOpen.
size

Size of data to copy into the buffer. For byte-addressable architectures, size is

measured in bytes. Some DSP architectures are not byte-addressable. In these cases,
size i1s measured in number of WORDs, where sizeof(WORD) ==

dst
A pointer to the start of the buffer where received data must be copied.
sizeRecvd

The number of units of data received and copied into the buffer dst (zero if data was
not copied).

Description

int rtlOStreamRecv(int streamlD,void * dst,size t size,size t *
sizeRecvd) receives data from a remote processor through a communication channel.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:
#define RTIOSTREAM_ERROR (-1)

See also rtiostreamSend for implementation and performance considerations.

1-443

1 Alphabetical List

See Also

rtlOStreamSend | rtl10StreamOpen | rtlOStreamClose | rt10Stream_wrapper

Topics

“Create PIL Target Connectivity Configuration”

“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”
“Configure Processor-In-The-Loop (PIL) for a Custom Target”

Introduced in R2009a

1-444

rlOStreamRecv

rHOStreamRecvy

Receive data from remote processor

Syntax

int rtlOStreamRecv(int streamlD,void * dst,size t size,size t *
sizeRecvd)

Arguments

streamID

A handle to the stream that was returned by a previous call to rt 10StreamOpen.
size

Size of data to copy into the buffer. For byte-addressable architectures, size is

measured in bytes. Some DSP architectures are not byte-addressable. In these cases,
size is measured in number of WORDs, where sizeof(WORD) ==

dst
A pointer to the start of the buffer where received data must be copied.
sizeRecvd

The number of units of data received and copied into the buffer dst (zero if data was
not copied).

Description

int rtlOStreamRecv(int streamlD,void * dst,size t size,size t *
sizeRecvd) receives data from a remote processor through a communication channel.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

1-445

1 Alphabetical List

See also rtiostreamSend for implementation and performance considerations.

See Also

rtlOStreamOpen | rtiostream wrapper | rtl10StreamClose | rtl0StreamSend

Topics
“Create PIL Target Connectivity Configuration”

Introduced in R2009a

1-446

rtlOStreamSend

rtlOStreamSend

Send data to remote processor

Syntax

int rtlOStreamSend(int streamlD,const void * src,size_t size,size_t
* sizeSent)

Arguments

streamID

A handle to the stream that was returned by a previous call to rt10StreamOpen.
Src

A pointer to the start of the buffer containing an array of data to transmit
size

Size of data to transmit. For byte-addressable architectures, size is measured in

bytes. Some DSP architectures are not byte-addressable. In these cases, size is
measured in number of WORDs, where sizeof(WORD) == 1.

sizeSent

Size of data actually transmitted (less than or equal to size), or zero if data was not
transmitted

Description

int rtl0StreamSend(int streamlD,const void * src,size_ t size,size_t
* sizeSent) sends data to a remote processor through a communication stream.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

Implementation and Performance Considerations

1-447

1 Alphabetical List

The API for rt10Stream functions is designed to be independent of the physical layer
across which the data is sent. Possible physical layers include RS232, Ethernet, or
Controller Area Network (CAN). The choice of physical layer affects the achievable data
rates for the host-target communication.

For a processor-in-the-loop (PIL) application there is no minimum data rate requirement.
However, the higher the data rate, the faster the simulation will run.

In general, a communications device driver will require additional hardware-specific or
channel-specific configuration parameters. For example:

* A CAN channel may require specification of which available CAN Node should be
used.

* A TCP/IP channel may require a port or static IP address to be configured.

* A CAN channel may require the CAN message ID and priority to be specified.

It is the responsibility of the user who implements the rt10Stream driver functions to

provide this configuration data, for example by hard-coding it, or by supplying arguments
to rel0OStreamOpen.

See Also

rtlOStreamOpen | rtlOStreamClose | rtl0StreamRecv | rtiostream_wrapper

Topics

“Create PIL Target Connectivity Configuration”

“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”
“Configure Processor-In-The-Loop (PIL) for a Custom Target”

Introduced in R2009a

1-448

rtlOStreamSend

rtlOStreamSend

Send data to remote processor

Syntax

int rtl0StreamSend(int streamlD,const void * src,size t size,size_ t
* sizeSent)

Arguments

streamID

A handle to the stream that was returned by a previous call to rt 10StreamOpen.
Src

A pointer to the start of the buffer containing an array of data to transmit.
size

Size of data to transmit. For byte-addressable architectures, size is measured in

bytes. Some DSP architectures are not byte-addressable. In these cases, size is
measured in number of WORDs, where sizeof(WORD) == 1.

sizeSent

Size of data actually transmitted (less than or equal to size), or zero if data was not
transmitted.

Description

int rtl0StreamSend(int streamlD,const void * src,size_t size,size_t
* sizeSent) sends data to a remote processor through a communication stream.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

1-449

1 Alphabetical List

1-450

Implementation and Performance Considerations

The API for rt10Stream functions is designed to be independent of the physical layer
across which the data is sent. Possible physical layers include RS232, Ethernet, or
Controller Area Network (CAN). The choice of physical layer affects the achievable data
rates for the host-target communication.

For a processor-in-the-loop (PIL) application there is no minimum data rate requirement.
However, the higher the data rate, the faster the simulation will run.

In general, a communications device driver will require additional hardware-specific or
channel-specific configuration parameters. For example:

* A CAN channel may require specification of which available CAN Node should be
used.

+ A TCP/IP channel may require a port or static IP address to be configured.

* A CAN channel may require the CAN message ID and priority to be specified.

It is the responsibility of the user who implements the rt10Stream driver functions to

provide this configuration data, for example by hard-coding it, or by supplying arguments
to rtl0StreamOpen.

See Also

rtl0StreamOpen | rtiostream wrapper | rtl10StreamClose | rtl0StreamRecv

Topics
“Create PIL Target Connectivity Configuration”

Introduced in R2009a

rtiostream_wrapper

rtiostream_wrapper

Test rtiostream shared library methods

Syntax

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®)

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®,pi1, vi1, p2,
v2, ...)

[RES,SIZE SENT] = rtiostream_wrapper(SHARED LIB,"send",ID, DATA,
SIZE)

[RES, DATA RECVD, SIZE RECVD] =

rtiostream_wrapper(SHARED LIB,"recv®,ID, SIZE)
RES = rtiostream_wrapper(SHARED LIB,"close”,ID)
rtiostream_wrapper(SHARED LIB, “unloadlibrary®)

Description

rtiostream_wrapper enables you to access the methods of an rtiostream shared
library from MATLAB code, for testing purposes.

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®) opens an rtiostream
communication channel through a shared library, and returns a handle to the channel.

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®,pi1, vi1, p2,

v2, ...) opensan rtiostream communication channel through a shared library.
p1,v1, ... are additional parameter value pairs used when opening an rtiostream
communication channel through a shared library. These arguments are implementation-
dependent, that is, they are specific to the shared library being called.

[RES,SIZE SENT] = rtiostream_wrapper(SHARED LIB,"send",ID, DATA,
SIZE) sends DATA into the communication channel with handle ID, and attempts to send
SIZE bytes.

[RES, DATA RECVD, SIZE RECVD] =
rtiostream_wrapper (SHARED LIB,"recv",ID, SIZE) receives up to SIZE bytes of
DATA from the communication channel with handle ID.

1-451

1 Alphabetical List

RES = rtiostream_wrapper(SHARED LIB,"close”,ID) closes the communication
channel with handle ID.

rtiostream_wrapper(SHARED LIB, “unloadlibrary®) unloads the SHARED LIB,
clearing persistent data.

Input Arguments

SHARED _LIB

Name of shared library that implements the required rtl10Stream functions
rtl0StreamOpen, rt10StreamSend, rtl0OStreamRecv, and rtl10StreamClose. Must
be on system path.

Specify shared library:

*+ 1ibTCPIP — For TCP/IP communication. Value of 1ibTCPIP depends on your
operating system.

+ "libmwrtiostreamserial .dl 1" — For serial communication.
open

Open communication channel

send

Send data into communication channel with handle ID
ID

Communication channel handle

DATA

Data to be sent

SIZE

Size of requested data in bytes

recv

Receive data from communication channel with handle ID

1-452

rtiostream_wrapper

close
Close communication channel with handle ID
unloadlibrary

Unload SHARED LIB

Name-Value Pair Arguments for TCP/IP Communication

p1,vi1, ... areoptional comma-separated pairs of Name,Value arguments, where
Name is the argument name and Value is the corresponding value. Name must appear
inside single quotes (" *). You can specify several name-value pair arguments in any
order as Namel,Valuel,..,NameN, ValueN

The shared library must be 11bTCPIP.
-client
Open rtiostream channel as TCP/IP server or client:

* 0— TCP/IP server
« 1 —TCP/P client

-port

Specify port number.

-hostname

Specify identifier for host computer, for example, " localhost”.
-blocking

Specify behavior of call to receive data (call uses input argument recv):

* 0 — Polling mode. If data is available, call returns with data. If data is not available,
call returns without waiting.

* 1 — Blocking mode. If data is available, call returns with data. If data is not
available, call waits for data. Use recv_timeout_secs to specify the waiting period.

The default is 0 unless the preprocessor macro define VXWORKS exists. In this case, the
default is 1.

1-453

1 Alphabetical List

1-454

-recv_timeout_secs
Specify, in seconds, waiting period of call to receive data:

* X, an integer greater than zero — Wait for X seconds.
* 0 — No waiting period.

+ -3— Wait 10 ms.

* -2 — Wait for default period.

* -1 — Wait indefinitely.

The default for client connections is to wait 1 second. The default for server connections
is to wait indefinitely.

Name-Value Pair Arguments for Serial Communication

p1,v1, ... are optional comma-separated pairs of Name,Value arguments, where
Name is the argument name and Value is the corresponding value. Name must appear
inside single quotes (" *). You can specify several name-value pair arguments in any
order as Namel,Valuel,..,NameN,ValueN

The shared library must be " libmwrtiostreamserial.dll”.

-port

Specify COM port for serial communication. You must specify bit rate using —baud.
-baud

Specify bit rate for serial communication port.

Output Arguments

STATION_ID
Handle to communication channel. If attempt is unsuccessful, value is -1.
RES

Error flag:

rtiostream_wrapper

* -1 — Error occurred

* 0— No error
SIZE_SENT

Number of bytes accepted by communication channel. Can be less than SIZE, that is, the
requested number of bytes to send.

DATA_RECVD
Data received
SIZE_RECVD

Number of bytes received from channel. Can be less than SIZE, that is, the requested
number of bytes to send.

Examples

The following examples open communication channels using the supplied TCP/IP and
serial communication drivers.

Open rtiostream channel stationA as a TCP/IP server:

stationA = rtiostream_wrapper("libmwrtiostreamtcpip.dil®, “open®,
"—client", "0",...
"-blocking®, "07,...
"-port®, port_number);

Opens rtiostream channel StationB as a TCP/IP client:

stationB = rtiostream_wrapper("libmwrtiostreamtcpip.dll®, “open”,
"—client","1",...
"-blocking®, "07,...
"-port®, port_number,...
"-hostname*, "localhost™);

If you use the supplied host-side driver for serial communications (as an alternative to
the drivers for TCP/IP), specify the bit rate when you open a channel with a specific port.
For example, open channel stationA with port COM1 and bit rate of 9600:

stationA = rtiostream_wrapper("libmwrtiostreamserial.dll”, “open”, ...

"-port®,TCoOM1", ...
"-baud®,"9600");

1-455

1 Alphabetical List

See Also

rtl0StreamOpen | rtl10StreamSend | rtlOStreamRecv | rtlOStreamClose

Topics

“Create PIL Target Connectivity Configuration”

“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”
“Configure Processor-In-The-Loop (PIL) for a Custom Target”

Introduced in R2008b

1-456

rtiostream_wrapper

rtiostream_wrapper

Test rtiostream shared library methods

Syntax

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®)

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®,pi1, vi1, p2,
v2, ...)

[RES,SIZE SENT] = rtiostream_wrapper(SHARED LIB,"send",ID, DATA,
SIZE)

[RES, DATA RECVD, SIZE RECVD] =

rtiostream_wrapper(SHARED LIB,"recv®,ID, SIZE)
RES = rtiostream_wrapper(SHARED LIB,"close”,ID)
rtiostream_wrapper(SHARED LIB, “unloadlibrary®)

Description

rtiostream_wrapper enables you to access the methods of an rtiostream shared
library from MATLAB code, for testing purposes.

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®) opens an rtiostream
communication channel through a shared library, and returns a handle to the channel.

STATION_ID = rtiostream_wrapper(SHARED LIB,"open®,pi1, vi1, p2,

v2, ...) opensan rtiostream communication channel through a shared library.
p1,v1, ... are additional parameter value pairs used when opening an rtiostream
communication channel through a shared library. These arguments are implementation-
dependent, that is, they are specific to the shared library being called.

[RES,SIZE SENT] = rtiostream_wrapper(SHARED LIB,"send",ID, DATA,
SIZE) sends DATA into the communication channel with handle ID, and attempts to send
SIZE bytes.

[RES, DATA RECVD, SIZE RECVD] =
rtiostream_wrapper (SHARED LIB,"recv",ID, SIZE) receives up to SIZE bytes of
DATA from the communication channel with handle ID.

1-457

1 Alphabetical List

1-458

RES = rtiostream_wrapper(SHARED LIB,"close”,ID) closes the communication
channel with handle ID.

rtiostream_wrapper(SHARED LIB, “unloadlibrary®) unloads the SHARED LIB,
clearing persistent data.

Input Arguments

SHARED LIB

Name of shared library that implements the required rtl10Stream functions
rtl0StreamOpen, rt10StreamSend, rtl0OStreamRecv, and rtl0StreamClose. Must
be on system path.

Specify shared library:

+ 1ibTCPIP — For TCP/IP communication. Value of 1ibTCPIP depends on your
operating system. See “Create a Target Communication Channel for Processor-In-
The-Loop (PIL) Simulation”.

* “libmwrtiostreamserial .dl 1™ — For serial communication.
open

Open communication channel

send

Send data into communication channel with handle ID

ID

Communication channel handle

DATA

Data to be sent

SIZE

Size of requested data in bytes

rtiostream_wrapper

recv

Receive data from communication channel with handle ID
close

Close communication channel with handle ID
unloadlibrary

Unload SHARED LIB

Name-Value Pair Arguments for TCP/IP Communication

p1,v1, ... areoptional comma-separated pairs of Name,Value arguments, where
Name is the argument name and Value is the corresponding value. Name must appear
inside single quotes (" *). You can specify several name-value pair arguments in any
order as Namel,Valuel,..,NameN, ValueN

The shared library must be IibTCPIP.
-client

Open rtiostream channel as TCP/IP server or client:

* 0— TCP/IP server
« 1—TCP/P client

-port

Specify port number.

-hostname

Specify identifier for host computer, for example, " localhost”.
-blocking

Specify behavior of call to receive data (call uses input argument recv):

* 0 — Polling mode. If data is available, call returns with data. If data is not available,
call returns without waiting.

1-459

1 Alphabetical List

1-460

* 1 — Blocking mode. If data is available, call returns with data. If data is not
available, call waits for data. Use recv_timeout_secs to specify the waiting period.

The default is 0 unless the preprocessor macro define VXWORKS exists. In this case, the
default is 1.

-recv_timeout_secs
Specify, in seconds, waiting period of call to receive data:

* X, an integer greater than zero — Wait for X seconds.
* 0 — No waiting period.

* -3— Wait 10 ms.

+ -2 — Wait for default period.

+ -1 — Wait indefinitely.

The default for client connections is to wait 1 second. The default for server connections
1s to wait indefinitely.

Name-Value Pair Arguments for Serial Communication

p1,v1, ... areoptional comma-separated pairs of Name,Value arguments, where
Name is the argument name and Value is the corresponding value. Name must appear
inside single quotes (" *). You can specify several name-value pair arguments in any
order as Namel,Valuel,..,NameN,ValueN

The shared library must be "libmwrtiostreamserial .dll".

-port

Specify COM port for serial communication. You must specify bit rate using —baud.
-baud

Specify bit rate for serial communication port.

Output Arguments

STATION_ID

Handle to communication channel. If attempt is unsuccessful, value is -1.

rtiostream_wrapper

RES
Error flag:

* -1 — Error occurred

* 0— No error
SIZE_SENT

Number of bytes accepted by communication channel. Can be less than SIZE, that is, the
requested number of bytes to send.

DATA_RECVD
Data received
SIZE_RECVD

Number of bytes received from channel. Can be less than SIZE, that is, the requested
number of bytes to send.

Examples

The following examples open communication channels using the supplied TCP/IP and
serial communication drivers.

Open rtiostream channel stationA as a TCP/IP server:

stationA = rtiostream_wrapper("libmwrtiostreamtcpip.dil®, “open®,
“-client®, "0",...
"-blocking®, "07,...
"-port®, port_number);

Opens rtiostream channel StationB as a TCP/IP client:

stationB = rtiostream_wrapper (" libmwrtiostreamtcpip.dll®, “open”,
"-client™,"1"7, ...
"-blocking®, "07,...
"-port®, port_number,...
"-hostname*®, "localhost™);

If you use the supplied host-side driver for serial communications (as an alternative to
the drivers for TCP/IP), specify the bit rate when you open a channel with a specific port.
For example, open channel stationA with port COM1 and bit rate of 9600:

1-461

1 Alphabetical List

stationA = rtiostream_wrapper("libmwrtiostreamserial.dll”, “open”, ...
"-port”,"COM1-, ...
"-baud®,"9600");

See Also

rtlOStreamOpen | rtl0StreamSend | rtlOStreamClose | rtl0OStreamRecv

Topics
“Create PIL Target Connectivity Configuration”
“Create a Target Communication Channel for Processor-In-The-Loop (PIL) Simulation”

Introduced in R2008b

1-462

rtw.codegenObjectives.Obijective class

riw.codegenObijectives.Objective class

Package: rtw.codegenObjectives

Customize code generation objectives

Description

An rtw.codegenObjectives.Objective object creates a code generation objective.

Construction

rtw.codegenObjectives.Objective

Methods

addCheck

addParam
excludeCheck
modifyInheritedParam
register
removelnheritedCheck
removelnheritedParam

setObjectiveName

Copy Semantics

Create custom code generation objectives

Add checks

Add parameters

Exclude checks

Modify inherited parameter values
Register objective

Remove inherited checks

Remove inherited parameters

Specify objective name

Handle. To learn how this affects your use of the class, see Copying Objects (MATLAB) in
the MATLAB Programming Fundamentals documentation.

1-463

1 Alphabetical List

Examples

Create a custom objective named Reduce RAM Example. The following code is the
contents of the sl _customization.m file that you create.

function sl_customization(cm)
%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;
index = objCustomizer.addCallbackObjFcn(@addObjectives);
objCustomizer.callbackFcn{index}();

end
function addObjectives

% Create the custom objective
obj = rtw.codegenObjectives.Objective(“ex_ram 17);
setObjectiveName(obj, "Reduce RAM Example®);

% Add parameters to the objective

addParam(obj, "DefaultParameterBehavior®, "Inlined”);
addParam(obj, "BooleanDataType®, “on");

addParam(obj, "OptimizeBlocklOStorage®, "on");
addParam(obj, “EnhancedBackFolding®, "on®");
addParam(obj, "BooleansAsBitfields®, "on");

% Add additional checks to the objective

% The Code Generation Advisor automatically includes "Check model

% configuration settings against code generation objectives®™ in every
% objective.

addCheck(obj, "mathworks.design.UnconnectedLinesPorts®);
addCheck(obj, "mathworks.design.Update®);

%Register the objective
register(obj);

end

See Also

Topics
“Create Custom Code Generation Objectives”

1-464

riw.codegenObjectives.Objective

rtw.codegenObijectives.Objective

Class: rtw.codegenObjectives.Objective
Package: rtw.codegenObjectives

Create custom code generation objectives

Syntax

obj = rtw.codegenObjectives._Objective(TobjID")

obj = rtw.codegenObjectives.Objective(“objID", "base objID")
Description

obj = rtw.codegenObjectives.Objective("objID") creates an objective object,
obj.

obj = rtw.codegenObjectives.Objective(“objID", "base objID") creates

an object, obj, for a new objective that is identical to an existing objective. You can then
modify the new objective to meet your requirements.

Input Arguments

objID A permanent, unique identifier for the objective.
* You must have

objID.
* The value of 0bj ID must remain constant.

* When you refresh your customizations, if 0bj ID is not unique,
Simulink generates an error.

base objID The identifier of the objective that you want to base the new
objective on.

1-465

1 Alphabetical List

Examples

Create a new objective:

obj = rtw.codegenObjectives.Objective("ex_ram_1%);

Create a new objective based on the existing Execution efficiency objective:

obj = rtw.codegenObjectives.Objective("ex_my_efficiency_1", "Execution efficiency");

See Also

Topics
“Create Custom Code Generation Objectives”

1-466

RTW.configSubsystemBuild

RTW.configSubsystemBuild

Package: RTW

Configure C function prototype or C++ class interface for right-click build of specified
subsystem

Syntax

RTW.configSubsystemBuild(block)

Description

RTW.configSubsystemBuild(block) opens a graphical user interface where you can
configure either C function prototype information or C++ class interface information for
right-click builds of a specified nonvirtual subsystem. A dialog box opens based on the
Language and Code interface packaging values selected for your model on the Code
Generation and Code Generation > Interface panes of the Configuration Parameters
dialog box.

To configure and generate C++ class interfaces for a nonvirtual subsystem, you must

+ Select the system target file ert.tlc for the model.
+ Select the Language parameter value C++ for the model.
+ Select the Code interface packaging parameter value C++ class for the model.

* Make sure that the subsystem is convertible to a Model block using the
function Simulink.SubSystem.convertToModelReference. For
referenced model conversion requirements, see the Simulink reference page
Simulink_SubSystem.convertToModelReference.

Input Arguments

block Character vector specifying the name of a nonvirtual subsystem
block in an ERT-based Simulink model.

1-467

1 Alphabetical List

See Also

Topics

“Configure Function Prototypes for Nonvirtual Subsystems”
“Control Generation of Function Prototypes”

“Configure C++ Class Interfaces for Nonvirtual Subsystems”
“Control Generation of C++ Class Interfaces”

Introduced in R2008b

1-468

rtw.connectivity.ComponentArgs

rtw.connectivity.ComponentArgs

Provide parameters to each target connectivity component

Syntax

componentArgs = rtw.connectivity.ComponentArgs (componentPath,
componentCodePath, componentCodeName, applicationCodePath)

Description

componentArgs = rtw.connectivity.ComponentArgs (componentPath,
componentCodePath, componentCodeName, applicationCodePath) returns

a handle to an object that provides methods for getting information about the source
component (e.g., the MATLAB function under test) and the target application (e.g., the
PIL application).

For methods, see the following table.

Method Syntax and Description

getComponentPath componentPath =
obj .getComponentPath

Returns the Simulink system path of the
source component (e.g., the path of the
referenced model that is under test).

getComponentCodePath componentCodePath =
obj .getComponentCodePath

Returns the Embedded Coder code
generation directory path associated
with the source component (e.g., the code
generation directory of the referenced
model that is under test).

getComponentCodeName componentCodeName =
obj .getComponentCodeName

1-469

1 Alphabetical List

1-470

Method

Syntax and Description

Returns the component name used for code
generation.

getApplicationCodePath

applicationCodePath =
obj.getApplicationCodePath

Returns the folder path associated with the
target application (e.g., the path associated
with the PIL application).

getParam

paramValue =
obj .getParam(paramName) ;

Returns the value of the specific model
configuration parameter for the generated
code. The method does not load the model.

See rtw.connectivity.Config for more information.

See Also

rtw._connectivity.Config

Topics

“Create PIL Target Connectivity Configuration”

Introduced in R2008b

rtw.connectivity.ComponentArgs

rtw.connectivity.ComponentArgs

Provide parameters to each target connectivity component

Syntax

componentArgs = rtw.connectivity.ComponentArgs(componentPath,
componentCodePath, componentCodeName, applicationCodePath)

Description

componentArgs = rtw.connectivity.ComponentArgs(componentPath,
componentCodePath, componentCodeName, applicationCodePath) returns

a handle to an object that provides methods for getting information about the source
component (e.g., the MATLAB function under test) and the target application (e.g., the
PIL application).

Method Syntax and Description

getComponentPath componentPath =
obj .getComponentPath

Returns the system path of the source
component (e.g., the path of the function
that is under test).

getComponentCodePath componentCodePath =
obj .getComponentCodePath

Returns the code generation folder path
associated with the source component (e.g.,
the code generation folder of the MATLAB
function that is under test).

getComponentCodeName componentCodeName =
obj .getComponentCodeName

Returns the component name used for code
generation.

getApplicationCodePath applicationCodePath =
obj.getApplicationCodePath

1-471

1 Alphabetical List

1-472

Method Syntax and Description
Returns the folder path associated with the
target application (e.g., the path associated
with the PIL application).

getParam settingValue =

obj .getParam(settingName) ;

Returns the value of the specific MATLAB
Coder setting for the generated code.

See Also

rtw._connectivity.Config

Topics

“Create PIL Target Connectivity Configuration”

Introduced in R2008b

riw.connectivity. Config

rtw.connectivity.Config

Define connectivity implementation, comprising builder, launcher, and communicator

components

Syntax

rtw.connectivity.Config(componentArgs, builder, launcher,

communicator)

Description

Constructor Description

Config Wrapper for the connectivity component
classes builder, launcher and
communicator.

Constructor Arguments

componentArgs rtw.connectivity.ComponentArgs
object.

builder rtw.connectivity.Builder
for example,
rtw.connectivity.MakefileBuilder
object.

launcher rtw.connectivity.Launcher object.

communicator rtw._connectivity.Communicator,

for example,
rtw.connectivity.Rtl10StreamHostCom

municator

object.

rtw.connectivity.Config(componentArgs, builder, launcher,
communicator) creates an rtw.connectivity.Config object.

To define a connectivity implementation:

1-473

1 Alphabetical List

1 You must create a subclass of rtw.connectivity.Config that creates instances of
your connectivity component classes:

rtw.connectivity._MakefileBuilder
rtw._connectivity.Launcher
* rtw.connectivity.Rtl0StreamHostCommunicator

You can see an example ConnectivityConfig.m, used in “Configure Processor-In-
The-Loop (PIL) for a Custom Target”.

2 Define the constructor for your subclass as follows:

function this = MyConfig(componentArgs)

When Simulink creates an instance of your subclass of
rtw.connectivity.Config, it provides an instance of the
rtw.connectivity.ComponentArgs class as the only constructor argument.
If you want to test your subclass of rtw.connectivity.Config manually, you
may want to create an rtw.connectivity.ComponentArgs object to pass as a
constructor argument.

3 After instantiating the builder, launcher and communicator objects in your subclass,
call the constructor of the superclass rtw.connectivity.Config to define your
complete target connectivity configuration. For example:

% Call superclass constructor to register components
this@rtw.connectivity.Config(componentArgs, ...
builder, launcher, communicator);

4 Optionally, for execution time profiling, use the setTimer method to register your
hardware timer. For example, if you specified the timer in a code replacement table,
insert the following line:

this.setTimer("MyCrlTable®)
MyCrlTable is the name of the code replacement table, which must be in a location
on the MATLAB search path.

Register your subclass name, for example, MyPIL.ConnectivityConfig to
Simulink by using the class rtw.connectivity.ConfigRegistry. This uses the

sl_customization.m mechanism to register your connectivity configuration.

The PIL infrastructure instantiates your subclass as required. The
sl_customization.m mechanism helps in specifying a suitable connectivity

1-474

riw.connectivity. Config

configuration for use with a particular PIL component (and its configuration set).

The subclass can also perform additional validation on construction. For example,

you can use the componentPath returned by the getComponentPath method of the
componentArgs constructor argument to query and validate parameters associated with
the PIL component under test.

For supported hardware implementation settings and other support information, see
“SIL and PIL Limitations”.

See Also

rtw.connectivity.MakefileBuilder | rtw.connectivity.Launcher
| rtw.connectivity.Rt